Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Precise inhibition is essential for microsecond interaural time difference coding

Abstract

Microsecond differences in the arrival time of a sound at the two ears (interaural time differences, ITDs) are the main cue for localizing low-frequency sounds in space. Traditionally, ITDs are thought to be encoded by an array of coincidence-detector neurons, receiving excitatory inputs from the two ears via axons of variable length (‘delay lines’), to create a topographic map of azimuthal auditory space1,2. Compelling evidence for the existence of such a map in the mammalian lTD detector, the medial superior olive (MSO), however, is lacking. Equally puzzling is the role of a—temporally very precise3—glycine-mediated inhibitory input to MSO neurons. Using in vivo recordings from the MSO of the Mongolian gerbil, we found the responses of ITD-sensitive neurons to be inconsistent with the idea of a topographic map of auditory space. Moreover, local application of glycine and its antagonist strychnine by iontophoresis (through glass pipette electrodes, by means of an electric current) revealed that precisely timed glycine-controlled inhibition is a critical part of the mechanism by which the physiologically relevant range of ITDs is encoded in the MSO. A computer model, simulating the response of a coincidence-detector neuron with bilateral excitatory inputs and a temporally precise contralateral inhibitory input, supports this conclusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ITD coding in the mammalian MSO.
Figure 2: Peaks of ITD functions are outside of the physiologically relevant range.
Figure 3: Effects of glycine and its antagonist strychnine in gerbil MSO neurons a, Peri-stimulus-time histogram showing precise phase-locking of a neuron in response to a 600-Hz pure tone.
Figure 4: Simulation of the shift in ITD caused by timed contralateral inhibition using a modified Hodgkin–Huxley model (see text).

Similar content being viewed by others

References

  1. Jeffress, L. A. A place theory of sound localization. J. Comp. Physiol. Psychol. 41, 35–39 (1948)

    Article  CAS  Google Scholar 

  2. Joris, P. X., Smith, P. H. & Yin, T. C. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21, 1235–1238 (1988)

    Article  Google Scholar 

  3. Grothe, B. & Sanes, D. H. Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J. Neurosci. 14, 1701–1709 (1994)

    Article  CAS  Google Scholar 

  4. Klumpp, R. & Eady, H. Some measurements of interaural time difference thresholds. J. Acoust. Soc. Am. 28, 215–232 (1956)

    Article  Google Scholar 

  5. Overholt, E., Rubel, E. W. & Hyson, R. L. A circuit for coding interaural time differences in the chick brainstem. J. Neurosci. 12, 1698–1708 (1992)

    Article  CAS  Google Scholar 

  6. Carr, C. E. & Konishi, M. Axonal delay lines for time measurement in the owl's brainstem. Proc. Natl Acad. Sci. USA 85, 8311–8315 (1988)

    Article  ADS  CAS  Google Scholar 

  7. Smith, P. H., Joris, P. X. & Yin, T. C. Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J. Comp. Neurol. 331, 245–260 (1993)

    Article  CAS  Google Scholar 

  8. Grothe, B. The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog. Neurobiol. 61, 581–610 (2000)

    Article  CAS  Google Scholar 

  9. Yin, T. C. & Chan, J. C. Interaural time sensitivity in medial superior olive of cat. J. Neurophys. 64, 465–488 (1990)

    Article  CAS  Google Scholar 

  10. Spitzer, M. W. & Semple, M. N. Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. J. Neurophys. 73, 1668–1690 (1995)

    Article  CAS  Google Scholar 

  11. Cant, N. B. & Hyson, R. L. Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hearing Res. 58, 26–34 (1992)

    Article  CAS  Google Scholar 

  12. Kuwabara, N. & Zook, J. M. Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J. Comp. Neurol. 324, 522–538 (1992)

    Article  CAS  Google Scholar 

  13. Grothe, B. & Sanes, D. H. Bilateral inhibition by glycinergic afferents in the medial superior olive. J. Neurophys. 69, 1192–1196 (1993)

    Article  CAS  Google Scholar 

  14. Smith, A. J., Owens, S. & Forsythe, I. D. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol. 529, 681–698 (2000)

    Article  CAS  Google Scholar 

  15. Grothe, B. & Park, T. J. Sensitivity to interaural time differences in the medial superior olive of a small mammal, the Mexican free-tailed bat. J. Neurosci. 18, 6608–6622 (1998)

    Article  CAS  Google Scholar 

  16. Heffner, R. S. & Heffner, H. E. Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav. Neurosci. 102, 422–428 (1988)

    Article  CAS  Google Scholar 

  17. McAlpine, D., Jiang, D. & Palmer, A. R. A neural code for low-frequency sound localization in mammals. Nature Neurosci. 4, 396–401 (2001)

    Article  CAS  Google Scholar 

  18. Grothe, B., Park, T. J. & Schuller, G. Medial superior olive in the free-tailed bat: response to pure tones and amplitude-modulated tones. J. Neurophys. 77, 1553–1565 (1997)

    Article  CAS  Google Scholar 

  19. Rothman, J. S., Young, E. D. & Manis, P. B. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J. Neurophys. 70, 2562–2583 (1993)

    Article  CAS  Google Scholar 

  20. Smith, P. H., Joris, P. X. & Yin, T. C. Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J. Neurophys. 79, 3127–3142 (1998)

    Article  CAS  Google Scholar 

  21. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000)

    Article  CAS  Google Scholar 

  22. Grothe, B. Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J. Neurophys. 71, 706–721 (1994)

    Article  CAS  Google Scholar 

  23. Kapfer, C., Seidl, A. H., Schweizer, H. & Grothe, B. Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nature Neurosci. 5, 257–253 (2002)

    Article  Google Scholar 

  24. Willott, J. F., Milbrandt, J. C., Bross, L. S. & Caspary, D. M. Glycine immunoreactivity and receptor binding in the cochlear nucleus of c57bl/6j and cba/caj mice: effects of cochlear impairment and aging. J. Comp. Neurol. 385, 405–414 (1997)

    Article  CAS  Google Scholar 

  25. Goldberg, J. M. & Brown, P. B. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J. Neurophys. 32, 613–636 (1969)

    Article  CAS  Google Scholar 

  26. Havey, D. C. & Caspary, D. M. A simple technique for constructing ‘piggy-back’ multibarrel microelectrodes. Electroencephalogr. Clin. Neurophys. 48, 249–251 (1980)

    Article  CAS  Google Scholar 

  27. Brand, A., Urban, A. & Grothe, B. Duration tuning in the mouse auditory midbrain. J. Neurophys. 84, 1790–1799 (2000)

    Article  CAS  Google Scholar 

  28. Yin, T. C. & Kuwada, S. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. J. Neurophys. 50, 1020–1042 (1983)

    Article  CAS  Google Scholar 

  29. Brughera, A. R., Stutman, E. R., Carney, L. H. & Colburn, H. S. A model with exitation and inhibition for cells in the medial superior olive. Audit. Neurosci. 2, 219–233 (1996)

    Google Scholar 

  30. Carney, L. H. A model for the responses of low-frequency auditory-nerve fibers in cat. J. Acoust. Soc. Am. 93, 401–417 (1993)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Breutel for technical assistance, C. Kapfer for suggestions, and M. Goetz for critical comments on the manuscript. This work was supported by the German Research Foundation (A.B., O.B., B.G.) and by the Medical Research Council (T.M., D.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Grothe.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, A., Behrend, O., Marquardt, T. et al. Precise inhibition is essential for microsecond interaural time difference coding. Nature 417, 543–547 (2002). https://doi.org/10.1038/417543a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417543a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing