Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons

Abstract

Pyramidal neurons receive tens of thousands of synaptic inputs on their dendrites. The dendrites dynamically alter the strengths of these synapses and coordinate them to produce an output in ways that are not well understood. Surprisingly, there turns out to be a very high density of transient A-type potassium ion channels in dendrites of hippocampal CA1 pyramidal neurons. These channels prevent initiation of an action potential in the dendrites, limit the back-propagation of action potentials into the dendrites, and reduce excitatory synaptic events. The channels act to prevent large, rapid dendritic depolarizations, thereby regulating orthograde and retrograde propagation of dendritic potentials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High density of transient K+ channels in distal dendrites.
Figure 2: K+ channel voltage-dependent properties and pharmacology.
Figure 3: Effect of A-channel blockade on dendritic action potentials.
Figure 4: Effect of A-channel blockade on the propagation of EPSPs.
Figure 5: Computer simulations.

Similar content being viewed by others

References

  1. Johnston, D., Magee, J. C., Colbert, C. M. & Christie, B. R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Stuart, G. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Magee, J. C. & Johnston, D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Magee, J. C. & Johnston, D. Characterization of single voltage-gated Na+and Ca2+channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. (Lond.) 487, 67–90 (1995).

    Article  CAS  PubMed Central  Google Scholar 

  6. Schwindt, P. C. & Crill, W. E. Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J. Neurophysiol. 74, 2220–2224 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).

    Article  CAS  Google Scholar 

  8. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Turner, R. W., Meyers, D. E. R., Richardson, T. L. & Barker, J. L. The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J. Neurosci. 11, 2270–2280 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Andreasen, M. & Lambert, J. D. C. Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. J. Physiol. (Lond.) 483, 421–441 (1995).

    Article  CAS  Google Scholar 

  11. Lipowsky, R., Gillessen, T. & Alzheimer, C. Dendritic Na+channels amplify EPSPs in hippocampal CA1 pyramidal cells. J. Neurophysiol. 76, 2181–2191 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Hounsgaard, J. & Midtgaard, J. Intrinsic determinants of firing pattern in purkinje cells of the turtle cerebellum in vitro. J. Physiol. (Lond.) 402, 731–749 (1988).

    Article  CAS  Google Scholar 

  13. Magee, J. C. & Johnston, D. Asynaptically-controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Markram, H. & Tsodyks, M. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, 807–810 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Christie, B. R., Magee, J. C. & Johnston, D. The role of dendritic action potentials and Ca2+influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. Learn. Mem. 3, 160–169 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Klee, R., Ficker, E. & Heinemann, U. Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3. J. Neurophys. 74, 1982–1995 (1995).

    Article  CAS  Google Scholar 

  17. Halliwell, J. V., Othman, I. B., Pelchen-Matthews, A. & Dolly, J. O. Central action of dendrotoxin: Selective reduction of a transient potassium conductance in hippocampus and binding to localized acceptors. Proc. Natl Acad. Sci. USA 83, 493–497 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Storm, J. F. Temporal integration by a slowly inactivating K+current in hippocampal neurons. Nature 336, 379–381 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Wu, R.-L. & Barrish, M. E. Two pharmacologically and kinetically distinct transient potassium currents in cultured embryonic mouse hippocampal neurons. J. Neurosci. 2235–2246 (1992).

  20. Segal, M. & Barker, J. Rat hippocampal neurons in culture: Potassium conductances. J. Neurophysiol. 51s, 1409–1433 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Segal, M., Rogawski, M. & Barker, J. Atransient potassium conductance regulates the excitability of cultured hippocampal and spinal neurons. J. Neurosci. 4, 604–609 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Solc, C. K., Zagotta, W. N. & Aldrich, R. W. Single-channel and genetic analyses reveal two distinct A-type potassium channels in Drosophila. Science 236, 1094–1097 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sheng, M., Tsaur, M., Jan, Y. N. & Jan, L. Y. Subcellular segregation of two A-type K+channel proteins in rat central neurons. Neuron 9, 271–284 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Maletic-Savatic, M., Lenn, N. J. & Trimmer, J. S. Differential spatiotemporal expression of K+channel polypeptides in rat hippocampal neurons developing in situ and in vitro. J. Neurosci. 15, 3840–3851 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Alonso, G. & Widmer, H. Clustering of Kv 4.2 potassium channels in postsynaptic membrane of rat supraoptic neurons: an ultrastructural study. Neuroscience 77, 617–621 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Helmchen, F., Imoto, K. & Sakmann, B. Ca2+buffering and action potential-evoked Ca2+signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 ((1996)).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnston, D. The calcium code. Biophys. J. 70, 1095 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Callaway, J. C. & Ross, W. N. Frequency dependent propagation of sodium action potentials in dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 74, 1395–1403 (1995).

    Article  CAS  Google Scholar 

  29. Jaffe, D. B. et al. The spread of Na+spikes determines the pattern of dendritic Ca2+entry into hippocampal neurons. Nature 374, 1395–1403 (1995).

    Google Scholar 

  30. Nicoll, A., Larkman, A. & Blakemore, C. Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. J. Physiol. (Lond.) 468, 693–710 (1993).

    Article  CAS  Google Scholar 

  31. Rapp, M., Yarom, Y. & Segev, I. Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells. Proc. Natl Acad. Sci. USA 93, 11985–11990 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mainen, Z. F., Joerges, J., Huguenard, J. R. & Sejnowski, T. J. Amodel of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Rudy, B. Diversity and ubiquity of K+channels. Neuroscience 25, 729–749 (1988).

    Article  CAS  Google Scholar 

  34. Gage, P. W. Activation and modulation of neuronal K+channels by GABA. Trends Neurosci. 15, 46–51 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Talukder, G. & Harrison, N. L. On the mechanism of modulation of transient outward current in cultured rat hippocampal neurons by di- and trivalent cations. J. Neurophysiol. 73, 73–79 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Q. X. & Wong, R. K. S. Intracellular Ca2+suppressed a transient potassium current in hippocampal neurons. J. Neurosci. 11, 337–343 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Seridio, P., Kentros, C. & Rudy, B. Identification of molecular components of A-type channels activating at subthreshold potentials. J. Neurophysiol. 72, 1516–1529 (1994).

    Article  Google Scholar 

  38. Covarrubias, M., Wei, A., Salkoff, L. & Vyas, T. B. Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 13, 1403–1412 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rettig, J. et al. Inactivation properties of voltage-gated K+channels altered by presence of β-subunit. Nature 369, 289–294 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Tsubokawa, H. & Ross, W. N. IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 2896–2906 (1995).

    Article  Google Scholar 

  41. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Magee, J. C., Avery, R. B., Christie, B. R. & Johnston, D. Dihydropyridine-sensitive, voltage-gated Ca2+channels contribute to the resting intracellular Ca2+concentration of hippocampal CA1 pyramidal neurons. J. Neurophysiol. 76, 3460–3470 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Hines, M. in Neural Systems: Analysis and Modeling (ed. Eeckman, F.) 127–136 (Kluwer Academic, Norwell, MA, (1993)).

    Book  Google Scholar 

  44. Colbert, C. M. & Johnston, D. Axonal action-potential initiation and Na+channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Pfaffinger and S. Sinha for comments on the manuscript, and R. Gray for help with computer programming and data analysis. This work was supported by grants from the NIMH, NIH, and the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Johnston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, D., Magee, J., Colbert, C. et al. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997). https://doi.org/10.1038/43119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/43119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing