Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts

Abstract

Id proteins may control cell differentiation by interfering with DNA binding of transcription factors. Here we show that targeted disruption of the dominant negative helix–loop–helix proteins Id1 and Id3 in mice results in premature withdrawal of neuroblasts from the cell cycle and expression of neural-specific differentiation markers. The Id1–Id3 double knockout mice also display vascular malformations in the forebrain and an absence of branching and sprouting of blood vessels into the neuroectoderm. As angiogenesis both in the brain and in tumours requires invasion of avascular tissue by endothelial cells, we examined the Id knockout mice for their ability to support the growth of tumour xenografts. Three different tumours failed to grow and/or metastasize in Id1+/-Id3-/- mice, and any tumour growth present showed poor vascularization and extensive necrosis. Thus, the Id genes are required to maintain the timing of neuronal differentiation in the embryo and invasiveness of the vasculature. Because the Id genes are expressed at very low levels in adults, they make attractive new targets for anti-angiogenic drug design.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Id1-/-Id3-/- embryos exhibit cavitational lesions, cranial haemorrhage and premature neuronal differentiation.
Figure 2: Premature and ectopic expression of NeuroD1, MATH1, MATH2 and MATH3 in E11.5 Id1-/-Id3-/- embryonic brain.
Figure 3: Defects of angiogenesis in Id1-/-Id3-/- embryos and Id expression in blood vessels.
Figure 4: Tumour growth is inhibited in Id knockout mice.
Figure 5: Decreased vascularization of xenografts and reduced metastases in Id1+/- Id3-/- mutant mice.
Figure 6: B6RV2 xenografts in Id1+/-Id3-/- mice show reduced αv-integrin and MMP2 staining and a thickening of the extracellular matrix.

Similar content being viewed by others

References

  1. Norton,J. D. et al. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8. 58–65 (1998).

    PubMed  Google Scholar 

  2. Lassar,A. B., Skapek,S. X. & Novitch,B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell biol. 6, 788–794 (1994).

    Article  CAS  Google Scholar 

  3. Ron,D. & Habener,J. F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as dominant-negative inhibitor of gene transcription. Genes Dev. 6, 439–453 (1992).

    Article  CAS  Google Scholar 

  4. Treacy,M. N., He,X. & Rosenfeld,M. G. I-POU: a POU-domain protein that inhibits neuron-specific gene activation. Nature 350, 577–584 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Yan,W. et al. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol. Cell Biol. 17, 7317–7327 (1997).

    Article  CAS  Google Scholar 

  6. Deed,R. W., Jasiok,M. & Norton,J. D. Lymphoid-specific expression of the Id3 gene in hematopoietic cells. Selective antagonism of E2A basic helix-loop-helix protein associated with Id3-induced differentiation of erythroleukemia cells. J. Biol. Chem. 27, 8278–8286 (1998).

    Article  Google Scholar 

  7. Ogata,T. et al. Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc. Natl Acad. Sci. USA 90, 9219–9222 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Neuman,T. et al. Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev. Biol. 160, 186–195 (1993).

    Article  CAS  Google Scholar 

  9. Voronova,A. F. & Lee,F. The E2A and tal-1 helix-loop-helix proteins associated in vivo and are modulated by Id proteins during interleukin 6-induced myeloid differentiation. Proc. Natl Acad. Sci. USA 91, 5952–5956 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Heemskerk,M. H. et al. Inhibition of T cells and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602 (1997).

    Article  CAS  Google Scholar 

  11. Martinsen,B. J. & Bronner-Fraser,M. Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281, 988–991 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Katagiri,T. et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J. Cell Biol. 128, 713 (1995)]. J. Cell Biol. 127, 1755–1766 (1994).

    Google Scholar 

  13. Yokota,Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Pan,L. et al. Impaired immune responses and B cell proliferation in mice lacking the Id3 gene. Mol. Cell Biol. 19, 5969–5980 (1999).

    Article  CAS  Google Scholar 

  15. Duncan,M. et al. The gene for the helix-loop-helix protein, Id, is specifically expressed in neural precursors. Dev. Biol. 154, 1–10 (1992).

    Article  CAS  Google Scholar 

  16. Ellmeier,W. & Weith,A. Expression of the helix-loop-helix gene Id3 during murine embryonic development. Dev. Dyn. 203, 163–173 (1995).

    Article  CAS  Google Scholar 

  17. Jen,Y., Manova,K. & Benezra,R. Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92–106 (1997).

    Article  CAS  Google Scholar 

  18. Risau,W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Lee,J. E. Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20 (1997).

    Article  ADS  Google Scholar 

  20. Xuan,S. et al. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14, 1141–1152 (1995).

    Article  CAS  Google Scholar 

  21. Price,M. et al. A mouse gene related to Distal-less shows a restricted expression in the developing forebrain. Nature 351, 748–751 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Simeone,A. et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–2747 (1993).

    Article  CAS  Google Scholar 

  23. Walther,C. & Gruss,P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

  24. Shimamura,K. et al. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    CAS  PubMed  Google Scholar 

  25. Bader,B. L. et al. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95, 507–519 (1998).

    Article  CAS  Google Scholar 

  26. Bain,G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements [see comments]. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  27. Zhuang,Y., Soriano,P. & Weintraub,H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    Article  CAS  Google Scholar 

  28. Erickson,J. W. & Cline,T. W. Molecular nature of the Drosophila sex determination signal and its link to neurogenesis. Science 251, 1071–1074 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Brooks,P. C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683–693 (1996).

    Article  CAS  Google Scholar 

  30. Perlman,J. M. & Volpe,J. J. Intraventricular hemorrhage in extremely small premature infants. Am. J. Dis. Child. 140, 1122–1124 (1986).

    CAS  PubMed  Google Scholar 

  31. Ishibashi,M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148 (1995).

    Article  CAS  Google Scholar 

  32. Jen,Y., Weintraub,H. & Benezra,R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A protein. Genes Dev. 6, 1466–1479 (1992).

    Article  CAS  Google Scholar 

  33. Melnikova,I. N. & Christy,B. A. Muscle cell differentiation is inhibited by the helix-loop-helix protein Id3. Cell Growth Differ. 7, 1067–1079 (1996).

    CAS  PubMed  Google Scholar 

  34. Sherwood,A., Hopp,A. & Smith,J. F. Cellular reactions to subependymal plate haemorrhage in the human neonate. Neuropathol. Appl. Neurobiol. 4, 245–261 (1978).

    Article  CAS  Google Scholar 

  35. Lindahl,P. et al. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  Google Scholar 

  36. Quertermous,E. E. et al. Cloning and characterization of a basic helix-loop-helix protein expressed in early mesoderm and the developing somites. Proc. Natl Acad. Sci. USA 91, 7066–7070 (1994).

    Article  ADS  CAS  Google Scholar 

  37. Brooks,P. C. et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  38. Zetter,B. R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424 (1998).

    Article  CAS  Google Scholar 

  39. Desprez,P. Y. et al. A novel pathway for mammary epithelial cell invasion induced by the helix-loop-helix protein Id-1. Mol. Cell Biol. 18, 4577–4588 (1998).

    Article  CAS  Google Scholar 

  40. O'Reilly,M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  Google Scholar 

  41. Boehm,T. et al. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance [see comments]. Nature 390, 404–407 (1997).

    Article  ADS  CAS  Google Scholar 

  42. Hogan,B. L. et al. Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97, 95–110 (1986).

    CAS  PubMed  Google Scholar 

  43. Manova,K. et al. Apoptosis in mouse embryos: elevated levels in pregastrulae and in the distal anterior region of gastrulae of normal and mutant mice. Dev. Dyn. 213, 293–308 (1998).

    Article  CAS  Google Scholar 

  44. Akazawa,C. et al. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730–8738 (1995).

    Article  CAS  Google Scholar 

  45. McCormick,M. B. NeuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family. Mol. Cell Biol. 16, 5792–5800 (1996).

    Article  CAS  Google Scholar 

  46. Lee,J. E. et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844 (1995).

    Article  ADS  CAS  Google Scholar 

  47. Simonson,M. S., Rooney,A. & Herman,W. H. Expression and differential regulation of Id1, a dominant negative regulator of basic helix-loop-helix transcription factors, in glomerular mesangial cells. Nucleic Acids Res. 21, 5767–5774 (1993).

    Article  CAS  Google Scholar 

  48. Echelard,Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  Google Scholar 

  49. Jen,Y., Manova,K. & Benezra,R. Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev. Dyn. 207, 235–252 (1996).

    Article  CAS  Google Scholar 

  50. Winnier,G. E., Hargett,L. & Hogan,B. L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 11, 926–940 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Giancotti, E. Lai and K. Hajjar for critical reading of the manuscript and members of the Benezra lab for helpful comments throughout the course of the work. S. Kerns, K. Witty-Blease, J. Waka and A. Nicola of the Molecular Cytology Core Facility at SKI provided invaluable technical assistance. We thank R. Alani for establishing the B-CA cell line, W. Mark for the B6RV2 cell line, L. Cohen-Gould for help with electron microscopy, H. Nguyen and H. Gultekin for histological consultation and S. Doshi for assistance with eye surgery. R.B. thanks J. Benezra for unwavering support and all participants of the Annual Harold Weintraub Memorial Symposium in Aspen Colorado for their insightful comments. This work was supported by grants from the Children's Brain Tumor Foundation and from the NIH (K12) (D.L.), a grant from the NIH Medical Scientist Training Program (A.Y.), a grant from NIH Cancer Center Support (K.M.) and grants from the NIH and NSF (R.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Benezra.

Supplementary information

Supplementary Information

Supplementary Information (PDF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyden, D., Young, A., Zagzag, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999). https://doi.org/10.1038/44334

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44334

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing