Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Response of melanocortin–4 receptor–deficient mice to anorectic and orexigenic peptides

Abstract

Mutations reducing the functional activity of leptin1,2, the leptin receptor3,4, α–melanocyte stimulating hormone5 (α–MSH) and the melanocortin–4 receptor6 (Mc4r) all lead to obesity in mammals. Moreover, mutant mice that ectopically express either agouti7 (Ay/ a mice) or agouti–related protein8 (Agrp), antagonists of melanocortin signalling8,9, become obese. These data suggest that α–MSH signalling transduced by Mc4r tonically inhibits feeding; however, it is not known to what extent this pathway mediates leptin signalling. We show here that Mc4r–deficient (Mc4r–/–) mice do not respond to the anorectic actions of MTII, an MSH–like agonist, suggesting that α–MSH inhibits feeding primarily by activating Mc4r. Obese Mc4r–/– mice do not respond significantly to the inhibitory effects of leptin on feeding, whereas non–obese Mc4r–/– mice do. These data demonstrate that melanocortin signalling transduced by Mc4r is not an exclusive target of leptin action and that factors resulting from obesity contribute to leptin resistance. Leptin resistance of obese Mc4r–/– mice does not prevent their response to the anorectic actions of ciliary neurotrophic factor (CNTF), corticotropin releasing factor (CRF), or urocortin; or the orexigenic actions of neuropeptide Y (NPY) or peptide YY (PYY), indicating that these neuromodulators act independently or downstream of Mc4r signalling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of control and Mc4r–/– mice to intracerebroventricular administration of the melanocortin receptor agonist MTII.
Figure 2: Response of control and Mc4r–/– mice to peripherally administered leptin.
Figure 3: Response of lean control and obese Mc4r–/– mice to peripherally administered DH–CNTF and centrally administered CRF or urocortin.
Figure 4: Response of control and Mc4r–/– mice to intracerebroventricular administration of NPY, PYY3–36, orexin–A, or orexin–B.

Similar content being viewed by others

References

  1. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  2. Montague, C.T. et al. Congenital leptin deficiency is associated with severe early–onset obesity in humans. Nature 387, 903– 908 (1997).

    Article  CAS  Google Scholar 

  3. Lee, G.–H. et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 379, 632–635 (1996).

    Article  CAS  Google Scholar 

  4. Clement, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398 –401 (1998).

    Article  CAS  Google Scholar 

  5. Krude, H. et al. Severe early–onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genet. 19, 155–157 ( 1998).

    Article  CAS  Google Scholar 

  6. Huszar, D. et al. Targeted disruption of the melanocortin–4 receptor results in obesity in mice. Cell 88, 131– 141 (1997).

    Article  CAS  Google Scholar 

  7. Manne, J., Argeson, A.C. & Siracusa, L.D. Mechanisms for the pleiotropic effects of the agouti gene. Proc. Natl Acad. Sci. USA 92, 4721 –4724 (1995).

    Article  CAS  Google Scholar 

  8. Ollmann, M.M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti–related protein. Science 278 , 135–138 (1997).

    Article  CAS  Google Scholar 

  9. Lu, D. et al. Agouti protein is an antagonist of the melanocyte–stimulating–hormone receptor. Nature 371, 799– 802 (1994).

    Article  CAS  Google Scholar 

  10. Gantz, I. et al. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250 (1993).

    CAS  PubMed  Google Scholar 

  11. Gantz, I. et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179 (1993).

    CAS  PubMed  Google Scholar 

  12. Hruby, V.J. et al. Cyclic lactam α–melanotropin analogues of Ac–Nle4–cyclo[Asp5, D–Phe7, Lys10] α–melanocyte–stimulating hormone–(4–10)–NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J. Med. Chem. 38, 3454–3461 ( 1995).

    Article  CAS  Google Scholar 

  13. Halaas, J.L. et al. Physiological response to long–term peripheral and central leptin infusion in lean and obese mice. Proc. Natl Acad. Sci. USA 94, 8878–8883 ( 1997).

    Article  CAS  Google Scholar 

  14. Boston, B.A., Blaydon, K.M., Varnerin, J. & Cone, R.D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science 278, 1641– 1644 (1997).

    Article  CAS  Google Scholar 

  15. Starr, R. et al. A family of cytokine–inducible inhibitors of signalling. Nature 387, 917–921 (1997).

    Article  CAS  Google Scholar 

  16. Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E. & Flier, J.S. Identification of SOCS–3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  CAS  Google Scholar 

  17. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  Google Scholar 

  18. Gloaguen, I. et al. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl Acad. Sci. USA 94, 6456–6461 ( 1997).

    Article  CAS  Google Scholar 

  19. Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P. & Baskin, D.G. Identification of targets of leptin action in rat hypothalamus. J. Clin. Invest. 98, 1101–1106 (1996).

    Article  CAS  Google Scholar 

  20. Hollopeter, G., Erickson, J.C., Seeley, R.J., Marsh, D.J. & Palmiter, R.D. Response of neuropeptide Y–deficient mice to feeding effectors. Regul. Pept. (in press).

  21. Costa, A. et al. Stimulation of corticotrophin–releasing hormone release by the obese (ob) gene product, leptin, from hypothalamic explants. Neuroreport 8, 1131–1134 (1997).

    Article  CAS  Google Scholar 

  22. Spina, M. et al. Appetite–suppressing effects of urocortin, a CRF–related neuropeptide. Science 273, 1561– 1564 (1996).

    Article  CAS  Google Scholar 

  23. Muglia, L., Jacobson, L., Dikkes, P. & Majzoub, J.A. Corticotropin–releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373, 427–432 (1995).

    Article  CAS  Google Scholar 

  24. Smith, G.W. et al. Corticotopin releasing factor receptor 1–deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093– 1102 (1998).

    Article  CAS  Google Scholar 

  25. Sahu, A., Kalra, P.S. & Kalra, S.P. Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides 9, 83–86 ( 1988).

    Article  CAS  Google Scholar 

  26. Hahn, T., Breininger, J., Baskin, D. & Schwartz, M. Coexpression of Agrp and NPY in fasting–activated hypothalamic neurons. Nature Neurosci. 1, 271– 272 (1998).

    Article  CAS  Google Scholar 

  27. De Lecea, L. et al. The hypocretins: hypothalamus–specific peptides with neuroexcitability activity. Proc. Natl Acad. Sci. USA 95, 322–327 (1998).

    Article  CAS  Google Scholar 

  28. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein–coupled receptors that regulate feeding behavior. Cell 92, 573–585 ( 1998).

    Article  CAS  Google Scholar 

  29. Erickson, J.C., Clegg, K.E. & Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381, 415–418 (1996).

    Article  CAS  Google Scholar 

  30. Di Marco, A. et al. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists. Proc. Natl Acad. Sci. USA 93, 9247–9252 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Zymogenetics for providing human leptin and L. Ste. Marie for establishing and maintaining pair–fed animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Palmiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, D., Hollopeter, G., Huszar, D. et al. Response of melanocortin–4 receptor–deficient mice to anorectic and orexigenic peptides. Nat Genet 21, 119–122 (1999). https://doi.org/10.1038/5070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing