Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis

An Erratum to this article was published on 01 September 1999

An Erratum to this article was published on 01 May 1999

Abstract

We show that fibroblast growth factor 2 (FGF2) and FGF receptors are transiently expressed by cells of the pseudostratified ventricular epithelium (PVE) during early neurogenesis. A single microinjection of FGF2 into cerebral ventricles of rat embryos at E15.5 increased the volume and total number of neurons in the adult cerebral cortex by 18% and 87%, respectively. Microinjection of FGF2 by the end of neurogenesis, at E20.5, selectively increased the number of glia. Mice lacking the FGF2 gene had fewer cortical neurons and glia at maturity. BrdU studies in FGF2-microinjected and FGF2-null animals suggested that FGF2 increases the proportion of dividing cells in the PVE without affecting the cell-cycle length. Thus, FGF2 increases the number of rounds of division of cortical progenitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution and time course of FGF2 and FGFR-1 mRNA during rat cortical development.
Figure 2: FGF2 treatment increases total number of cells and number of neurotransmitter-positive neurons without altering cortical architecture.
Figure 3: Progenitor cells in FGF2-treated rats and FGF2-null mutant mice.
Figure 4: Decrease in neuronal density in the cerebral cortex of FGF2 –/– mice.

Similar content being viewed by others

References

  1. Rakic, P. A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    Article  CAS  Google Scholar 

  2. Bayer, S. A. & Altman, J. Neocortical Development (Raven, New York, 1991).

    Google Scholar 

  3. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. Mode of cell proliferation in the developing mouse neocortex. Proc. Natl. Acad. Sci.USA 91, 373–379 (1994).

    Article  Google Scholar 

  4. Bohen, P., Esch, F., Baird, A., Jones, K. L. & Gospodarowicz, D. Human brain fibroblast growth factor: Isolation and partial chemical characterization. FEBS Lett. 185, 177–181 (1985).

    Article  Google Scholar 

  5. Nurcombe, V., Ford, M. D., Wildschut, J. A. & Bartlett, P. F. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 260, 103– 106 (1993).

    Article  CAS  Google Scholar 

  6. Partanen, J., Vainikka, S. & Alitalo, K. Structural and functional specificity of FGF receptors. Phil. Trans. R. Soc. Lond. B 340, 297– 303 (1993).

    Article  CAS  Google Scholar 

  7. Orr-Urtreger, A., Givol, D., Yayon, A., Yarden, Y. & Lonai, P. Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113, 1419–1434 (1991).

    CAS  PubMed  Google Scholar 

  8. Patstone, G., Pasquale, E. B. & Maher, P. A. Different members of the fibroblast growth factor receptor family are specific to distinct cell types in the developing chicken embryo. Dev. Biol. 155, 107– 123 (1993).

    Article  CAS  Google Scholar 

  9. Murphy, M., Drago, J. & Bartlett, P. F. Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J. Neurosci. Res. 25, 463–475 (1990).

    Article  CAS  Google Scholar 

  10. Cattaneo, E. & McKay, R. D. G. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762–765 ( 1990).

    Article  CAS  Google Scholar 

  11. Vaccarino, F. M., Schwartz, M. L., Hartigan, D. & Leckman, J. F. Effect of basic fibroblast growth factor on the genesis of excitatory and inhibitory neurons in primary cultures of cells from the mammalian telencephalon. Cereb. Cortex 1, 64–78 (1995).

    Article  Google Scholar 

  12. Ray, J., Peterson, D. A., Schinstine, M. & Gage, F. H. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 3602–3606 (1993).

    Article  CAS  Google Scholar 

  13. Kilpatrick, T. J. & Bartlett, P. F. Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci. 15, 3653–3661 ( 1995).

    Article  CAS  Google Scholar 

  14. Zhou, M. et al. Fibroblast growth factor 2 controls vascular tone. Nat. Med. 4, 201–207 ( 1998).

    Article  CAS  Google Scholar 

  15. Ortega, S., Ittmann, M., Tsang, S. H., Ehrich, M. & Basilico, C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci.USA 95, 5672–5677 (1998).

    Article  CAS  Google Scholar 

  16. Dono, R., Texido, G., Dussel, R., Ehmke, H. & Zeller, R. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17, 4213–4225 (1998).

    Article  CAS  Google Scholar 

  17. Engele, J. & Bohn, M. C. Effects of acidic and basic fibroblast growth factors (aFGF, bFGF) on glial precursor cell proliferation: Age dependency and brain region specificity. Dev. Biol. 152, 363–372 (1992).

    Article  CAS  Google Scholar 

  18. Vescovi, A. L., Reynolds, B. A., Fraser, D. D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966 ( 1993).

    Article  CAS  Google Scholar 

  19. Williams, B. P., Abney, E. R. & Raff, M. C. Macroglial cell development in embryonic rat brain: studies using monoclonal antibodies, fluorescence activated cell sorting, and cell culture. Dev. Biol. 112, 126– 134 (1985).

    Article  CAS  Google Scholar 

  20. McKinnon, R. D., Matsui, T., Dubois-Dalq, M. & Aaronson, S. A. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5, 603–614 ( 1990).

    Article  CAS  Google Scholar 

  21. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J. Neurosci. 13, 820–833 ( 1993).

    Article  CAS  Google Scholar 

  22. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labelling of nuclear fragmentation. J. Cell Biol. 119, 493–501 ( 1992).

    Article  CAS  Google Scholar 

  23. Blaschke, A. J., Staley, K. & Chun, J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122, 1165–1174 (1996).

    CAS  PubMed  Google Scholar 

  24. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    Article  CAS  Google Scholar 

  25. Reznikov, K., Acklin, S. E. & van der Kooy, D. Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages. Dev. Dyn. 210, 328–343 (1997).

    Article  CAS  Google Scholar 

  26. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neurogenesis. J. Neurosci. 16, 6183–6196 (1996).

    Article  CAS  Google Scholar 

  27. Takauwa, N., Zhou, W., Kumada, M. & Takuwa, Y. Ca2+-dependent stimulation of retinoblastoma gene product phosphorylation and p34cdc2 kinase activation in serum-stimulated human fibroblasts. J. Biol. Chem. 268, 138–145 ( 1993).

    Google Scholar 

  28. Zhan, X., Hu, X., Friesel, R. & Maciag, T. Long term growth factor exposure and differential tyrosine phosphorylation are required for DNA synthesis in Balb/c3T3 cells. J. Biol. Chem. 268 , 9611–9620 (1993).

    CAS  PubMed  Google Scholar 

  29. DeHamer, M. K., Guevara, J. L., Hannon, K., Olwin, B. B. & Calof, A. L. Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factor. Neuron 13, 1083– 1097 (1994).

    Article  CAS  Google Scholar 

  30. Cavanagh, J. F. R., Mione, M. C., Pappas, I. S. & Parnavelas, J. G. Basic fibroblast growth factor prolongs the proliferation of rat cortical progenitor cells in vitro without altering their cell cycle parameters. Cereb. Cortex 7, 293–302 (1997).

    Article  CAS  Google Scholar 

  31. Thomaidou, D., Mione, M. C., Cavanagh, J. F. R. & Parnavelas, J. G. Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17, 1075– 1085 (1997).

    Article  CAS  Google Scholar 

  32. Fujita, S. The matrix cell and cytogenesis in the developing central nervous system. J. Comp. Neurol. 120, 37– 42 (1963).

    Article  CAS  Google Scholar 

  33. Smart, I. The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine -H3 injection. J. Comp. Neurol. 116, 325–338 (1961).

    Article  Google Scholar 

  34. Weise, B., Janet, T. & Grothe, C. Localization of bFGF and FGF-receptor in the developing nervous system of the embryonic and newborn rat. J. Neurosci. Res. 34, 442–453 ( 1993).

    Article  CAS  Google Scholar 

  35. Powell, P. P., Finklestein, S. P., Dionne, C. A., Jaye, M. & Klagsbrun, M. Temporal, differential and regional expression of mRNA for basic fibroblast growth factor in the developing and adult rat brain. Mol. Brain Res. 11, 71– 77 (1991).

    Article  CAS  Google Scholar 

  36. Giordano, S., Sherman, L., Lyman, W. & Morrison, R. Multiple molecular weight forms of basic fibroblast growth factor are developmentally regulated in the central nervous system. Dev. Biol. 152, 293–303 (1992).

    Article  CAS  Google Scholar 

  37. Anderson, S. A., Eisenstat, D. D., Shi, L. & Rubenstein, J. L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474– 476 (1997).

    Article  CAS  Google Scholar 

  38. Basilico, C. & Moscatelli, D. The FGF family of growth factors and oncogenes. Adv. Cancer Res. 59, 115– 165 (1992).

    Article  CAS  Google Scholar 

  39. Smallwood, P. M. et al. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci.USA 93, 9850–9857 (1996).

    Article  CAS  Google Scholar 

  40. Eckenstein, F. P. Fibroblast growth factors in the nervous system. J. Neurobiol. 25, 1467–1480 ( 1994).

    Article  CAS  Google Scholar 

  41. Florkiewicz, R. Z., Majack, R. A., Buechler, R. D. & Florkiewicz, E. Quantitative export of FGF2 occurs through an alternative, energy-dependent, non-ER pathway. J. Cell. Physiol. 162, 388 –399 (1995).

    Article  CAS  Google Scholar 

  42. Ray, J. et al. Expression of biologically active basic fibroblast growth factor by genetically modified rat primary skin fibroblasts. J. Neurochem. 64, 503–513 ( 1995).

    Article  CAS  Google Scholar 

  43. West, M. J., Slomianka, L. & Gundersen, H. J. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat. Rec. 231, 482–497 (1991).

    Article  CAS  Google Scholar 

  44. West, M. J. New stereological methods for counting neurons. Neurobiol. Aging 14, 275–285 ( 1993).

    Article  CAS  Google Scholar 

  45. Robel, L. et al. Fibroblast growth factor 2 increases Otx2 expression in precursor cells from the mammalian telencephalon. J. Neurosci. 15, 7879–7891 ( 1995).

    Article  CAS  Google Scholar 

  46. Wanaka, A., Johnson, E. M. Jr. & Milbrandt, J. Localization of FGF receptor mRNA in the adult rat central nervous system by in situ hybridization. Neuron 5, 267–281 ( 1990).

    Article  CAS  Google Scholar 

  47. Acklin, S. E. & van der Kooy, D. Clonal heterogeneity in the germinal zone of the developing rat telencephalon. Development 118, 175–192 ( 1993).

    CAS  PubMed  Google Scholar 

  48. Brown, N. A. Postimplantation Mammalian Embryos. A Practical Approach (IRL at Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NARSAD and the National Science Foundation (FMV) and NIH (MLS). The authors thank D. Stull and N. Sestan for help with in situ hybridization protocols and P. Rakic for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaccarino, F., Schwartz, M., Raballo, R. et al. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci 2, 246–253 (1999). https://doi.org/10.1038/6350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing