Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motion perception during saccadic eye movements

Abstract

During rapid eye movements, motion of the stationary world is generally not perceived despite displacement of the whole image on the retina. Here we report that during saccades, human observers sensed visual motion of patterns with low spatial frequency. The effect was greatest when the stimulus was spatiotemporally optimal for motion detection by the magnocellular pathway. Adaptation experiments demonstrated dependence of this intrasaccadic motion percept on activation of direction-selective mechanisms. Even two-dimensional complex motion percepts requiring spatial integration of early motion signals were observed during saccades. These results indicate that the magnocellular pathway functions during saccades, and that only spatiotemporal limitations of visual motion perception are important in suppressing awareness of intrasaccadic motion signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Motion perception during a saccade in the same direction as a high-speed vertical grating (10% contrast).
Figure 2: Temporal tuning of motion perception.
Figure 3: Direction discrimination experiment.
Figure 4: Direction-selective adaptation.
Figure 5: Perceived direction of two-dimensional motion.

Similar content being viewed by others

References

  1. Burr, D. C. & Ross, J. Contrast sensitivity at high velocities. Vision Res. 22, 479–484 (1982).

    Article  CAS  Google Scholar 

  2. Shioiri, S. & Cavanagh, P. Saccadic suppression of low-level motion. Vision Res. 29, 915–928 (1989).

    Article  CAS  Google Scholar 

  3. Ilg, U. J. & Hoffmann, K. P. Motion perception during saccades. Vision Res. 33, 211–220 (1993).

    Article  CAS  Google Scholar 

  4. Judge, S. J., Wurtz, R. H. & Richmond, B. J. Vision during saccadic eye movements. I. Visual interactions in striate cortex. J. Neurophysiol. 43, 1133–1155 (1980).

    Article  CAS  Google Scholar 

  5. Campbell, F. W. & Wurtz, R. H. Saccadic omission: why we do not see a grey-out during a saccadic eye movement. Vision Res. 18, 1297–1303 (1978).

    Article  CAS  Google Scholar 

  6. Maunsell, J. H., Nealey, T. A. & DePriest, D. D. Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J. Neurosci. 10, 3323–3334 (1990).

    Article  CAS  Google Scholar 

  7. Merigan, W. H., Byrne, C. E. & Maunsell, J. H. Does primate motion perception depend on the magnocellular pathway? J. Neurosci. 11, 3422–3429 (1991).

    Article  CAS  Google Scholar 

  8. Movshon, J. A. & Newsome, W. T. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16, 7733–7741 (1996).

    Article  CAS  Google Scholar 

  9. Hawken, M. J., Shapley, R. M. & Grosof, D. H. Temporal-frequency selectivity in monkey visual cortex. Vis. Neurosci. 13, 477–492 (1996).

    Article  CAS  Google Scholar 

  10. Ross, J., Burr, D. & Morrone, C. Suppression of the magnocellular pathway during saccades. Behav. Brain Res. 80, 1–8 (1996).

    Article  CAS  Google Scholar 

  11. Burr, D. C., Morrone, M. C. & Ross, J. Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513 (1994).

    Article  CAS  Google Scholar 

  12. Bair, W. & O'Keefe, L. P. The influence of fixational eye movements on the response of neurons in area MT of the macaque. Vis. Neurosci. 15, 779–786 (1998).

    Article  CAS  Google Scholar 

  13. O'Regan, J. K. Solving the ‘real’ mysteries of visual perception: the world as an outside memory. Can. J. Psychol. 46, 461–488 (1992).

    Article  CAS  Google Scholar 

  14. Bridgeman, B., Van der Heijden, A. H. C. & Velichkovsky, B. M. A theory of visual stability across saccadic eye movements. Behav. Brain Sci. 17, 247–292 (1994).

    Article  Google Scholar 

  15. Li, W. & Matin, L. Saccadic suppression of displacement: separate influences of saccade size and of target retinal eccentricity. Vision Res. 37, 1779–1797 (1997).

    Article  CAS  Google Scholar 

  16. Braddick, O. J. Low-level and high-level processes in apparent motion. Phil. Trans. R. Soc. Lond. B Biol.Sci. 290, 137–151 (1980).

    Article  CAS  Google Scholar 

  17. Cavanagh, P. Attention-based motion perception. Science 257, 1563–1565 (1992).

    Article  CAS  Google Scholar 

  18. Robson, J. G. Spatial and temporal contrast sensitivity functions of the visual system. J. Opt. Soc. Am. 56, 1141–1142 (1966).

    Article  Google Scholar 

  19. Bahill, A. T., Clark, M. R. & Stark, L. The main sequence, a tool for studying human eye movements. Math. Biosci. 24, 191–204 (1975).

    Article  Google Scholar 

  20. Collewijn, H., Erkelens, C. J. & Steinman, R. M. Binocular co-ordination of human horizontal saccadic eye movements. J. Physiol. (Lond.) 404, 157–182 (1988).

    Article  CAS  Google Scholar 

  21. Morgan, M. J. Analogue models of motion perception. Phil. Trans. R. Soc. Lond. B Biol. Sci. 290, 117–135 (1980).

    Article  CAS  Google Scholar 

  22. van Santen, J. P. & Sperling, G. Elaborated Reichardt detectors. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2, 300–321 (1985).

    Article  CAS  Google Scholar 

  23. Watson, A. B. & Ahumada, A. J. Jr. Model of human visual-motion sensing. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2, 322–341 (1985).

    Article  CAS  Google Scholar 

  24. Burr, D. C. Temporal summation of moving images by the human visual system. Proc. R. Soc. Lond. B Biol. Sci. 211, 321–339 (1981).

    Article  CAS  Google Scholar 

  25. Anderson, S. J. & Burr, D. C. Spatial and temporal selectivity of the human motion detection system. Vision Res. 25, 1147–1154 (1985).

    Article  CAS  Google Scholar 

  26. Deubel, H., Elsner, T. & Hauske, G. Saccadic eye movements and the detection of fast-moving gratings. Biol. Cybern. 57, 37–45 (1987).

    Article  CAS  Google Scholar 

  27. Levinson, E. & Sekuler, R. The independence of channels in human vision selective for direction of movement. J. Physiol. (Lond.) 250, 347–366 (1975).

    Article  CAS  Google Scholar 

  28. Hubel, D. H. & Wiesel, T. N. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977).

    Article  CAS  Google Scholar 

  29. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  CAS  Google Scholar 

  30. Yuille, A. L. & Grzywacz, N. M. A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988).

    Article  CAS  Google Scholar 

  31. Wuerger, S., Shapley, R. & Rubin, N. “On the visually perceived direction of motion” by Hans Wallach: 60 years later. Perception 11, 1317–1367 (1996).

    Article  Google Scholar 

  32. Kooi, F. L. Local direction of edge motion causes and abolishes the barber pole illusion. Vision Res. 33, 2347–2351 (1993).

    Article  CAS  Google Scholar 

  33. Castet, E., Charton, V. & Dufour, A. The extrinsic/intrinsic classification of 2D motion signals with barber-pole stimuli. Vision Res. 39, 915–932 (1999).

    Article  CAS  Google Scholar 

  34. Albright, T. D. & Stoner, G. R. Visual motion perception. Proc. Natl. Acad. Sci. USA 92, 2433–2440 (1995).

    Article  CAS  Google Scholar 

  35. Movshon, A. J., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. in Pattern Recognition Mechanisms (eds. Chagas, C., Gattas, R. & Gross, C. G.) 117–151 (Vatican Press, Rome, 1985).

    Book  Google Scholar 

  36. Breitmeyer, B. G. & Ganz, L. Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychol. Rev. 83, 1–36 (1976).

    Article  CAS  Google Scholar 

  37. Volkmann, F. C. Human visual suppression. Vision Res. 26, 1401–1416 (1986).

    Article  CAS  Google Scholar 

  38. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    Article  CAS  Google Scholar 

  39. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Article  CAS  Google Scholar 

  40. Pasternak, T. & Merigan, W. H. Motion perception following lesions of the superior temporal sulcus in the monkey. Cereb. Cortex 4, 247–259 (1994).

    Article  CAS  Google Scholar 

  41. Newsome, W. T. & Wurtz, R. H. Probing visual cortical function with discrete chemical lesions. Trends Neurosci. 11, 394–400 (1988).

    Article  CAS  Google Scholar 

  42. Erickson, R. G. & Thier, P. A neuronal correlate of spatial stability during periods of self-induced visual motion. Exp. Brain Res. 86, 608–616 (1991).

    Article  CAS  Google Scholar 

  43. Haarmeier, T., Thier, P., Repnow, M. & Petersen, D. False perception of motion in a patient who cannot compensate for eye movements. Nature 389, 849–852 (1997).

    Article  CAS  Google Scholar 

  44. Matin, L. et al. Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216, 198–201 (1982).

    Article  CAS  Google Scholar 

  45. Deubel, H., Bridgeman, B. & Schneider, W. X. Immediate post-saccadic information mediates space constancy. Vision Res. 38, 3147–3159 (1998).

    Article  CAS  Google Scholar 

  46. Grüsser, O. J., Krizic, A. & Weiss, L. R. Afterimage movement during saccades in the dark. Vision Res. 27, 215–226 (1987).

    Article  Google Scholar 

  47. Bockisch, C. J. & Miller, J. M. Different motor systems use similar damped extraretinal eye position information. Vision Res. 39, 1025–1038 (1999).

    Article  CAS  Google Scholar 

  48. Van Essen, D. C. & DeYoe, E. A. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 383–400 (MIT Press, Cambridge, Massachusetts, 1995).

  49. Corbetta, M., Miezin, F. M., Shulman, G. L. & Petersen, S. E. A PET study of visuospatial attention. J. Neurosci. 13, 1202–1226 (1993).

    Article  CAS  Google Scholar 

  50. Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 49, 467–477 (1971).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. S. Stone, M. J. Morgan, J. K. O'Regan and A. Riehle for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Castet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castet, E., Masson, G. Motion perception during saccadic eye movements. Nat Neurosci 3, 177–183 (2000). https://doi.org/10.1038/72124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing