Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys

Abstract

Human visual function declines with age. Much of this decline is probably mediated by changes in the central visual pathways. We compared the stimulus selectivity of cells in primary visual cortex (striate cortex or V1) in young adult and very old macaque monkeys using single-neuron in vivo electrophysiology. Our results provide evidence for a significant degradation of orientation and direction selectivity in senescent animals. The decreased selectivity of cells in old animals was accompanied by increased responsiveness to all orientations and directions as well as an increase in spontaneous activity. The decreased selectivities and increased excitability of cells in old animals are consistent with an age-related degeneration of intracortical inhibition. The neural changes described here could underlie declines in visual function during senescence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrographs of whole-mounted, HRP-labeled retinae and single intracellularly dye-filled ganglion cells.
Figure 2: Orientation and direction biases in young and old macaque V1 cells.
Figure 3: Tuning curves and corresponding polar plots obtained from four old monkey cells.
Figure 4: Neurons in old monkeys show increased visually driven and baseline activities.

Similar content being viewed by others

References

  1. Kline, D. W. & Schieber, F. in Handbook of the Psychology of Aging (eds. Birren, J. E. & Schaie, K. W.) 296–331 (Van Nostrand, New York, 1985).

    Google Scholar 

  2. Kline, D. Light, ageing, and visual performance. Vision Vis. Dys. 16, 150–161 (1991).

    Google Scholar 

  3. Tran, D. B., Silverman, S. E., Zimmerman, K. & Feldon, S. E. Age-related deterioration of motion perception and detection. Graefe's Arch. Clin. Exp. Ophthalmol. 236, 269–273 (1998).

    Article  CAS  Google Scholar 

  4. Porciatti, V., Fiorentini, A., Morrone, M. C. & Burr, D. C. The effects of ageing on reaction times to motion onset. Vis. Res. 39, 2157–2164 (1999).

    Article  CAS  Google Scholar 

  5. Kline, D. W., Schieber, F., Abusamra, L. C. & Coyne, A. C. Age and the visual channels: Contrast sensitivity and response speed. J. Gerontol. 38, 211–216 (1983).

    Article  CAS  Google Scholar 

  6. Weston, H. C. The effect of age and illumination upon visual performance with close sights. Br. J. Ophthalmol. 32, 645–653 (1948).

    Article  CAS  Google Scholar 

  7. Ordy, J. M. & Brizzee, K. R. in Sensory Systems and Comminication in the Elderly (eds. Ordy, J. M. & Brizzee, K. R.) 13–50 (Raven, New York, 1979).

    Google Scholar 

  8. Owsley, C., Sekuler, R. & Boldt, C. Aging and low-contrast vision: face perception. Invest. Ophthalmol. Vis. Sci. 21, 362–359 (1981).

    CAS  PubMed  Google Scholar 

  9. Owsley, C. & Sloane, M. E. Contrast sensitivity, acuity, and the perception of ‘realworld’ targets. Br. J. Ophthalmol. 71, 791–796 (1987).

    Article  CAS  Google Scholar 

  10. Spear, P. D. Neural basis of visual deficits during aging. Vis. Res. 33, 2589–2609 (1993).

    Article  CAS  Google Scholar 

  11. Ahmad, A. & Spear, P. D. Effects of aging on the size, density, and number of rhesus monkey lateral geniculate neurons. J. Comp. Neurol. 334, 631–643 (1993).

    Article  CAS  Google Scholar 

  12. Spear, P. D., Moore, R. J., Kim, C. B. Y., Xue, J. & Tumosa, N. Effects of aging on the primate visual system: Spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys. J. Neurophysiol. 72, 402–420 (1994).

    Article  CAS  Google Scholar 

  13. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  14. Orban, G. A. in The Neural Basis of Visual Function (ed. Leventhal, A. G.) 173–217 (CRC, Boca Raton, Florida, 1991).

    Google Scholar 

  15. Schiller, P. H., Finlay, B. H. & Volman, S. F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288–1319 (1976).

    Article  CAS  Google Scholar 

  16. DeValois, R. L., Yund, E. W. & Hepler N. The orientation and direction selectivity of cells in the macaque visual cortex. Vis. Res. 22, 531–544 (1982).

    Article  CAS  Google Scholar 

  17. Ross, R. G. et al. The effects of age on a smooth pursuit tracking task in adults with schizophrenia and normal subjects. Biol. Psychiatry 46, 384–391 (1999).

    Article  Google Scholar 

  18. Porciatti, V., Burr, D. C., Morrone, C. & Fiorentini, A. The effects of ageing on the pattern electroretinogram and visual evoked potential in humans. Vis. Res. 32, 1199–1209 (1992).

    Article  CAS  Google Scholar 

  19. Tomoda, H., Celesia, G. G., Brigell, M. G. & Toleikis, S. The effects of age on steady-state pattern electroretinograms and visual evoked potentials. Doc. Ophthalmol. 77, 201–211 (1991).

    Article  CAS  Google Scholar 

  20. Trick, G. L., Trick, L. R. & Haywood, K. M. Altered pattern evoked retinal and cortical potentials associated with human senescence. Curr. Eye Res. 5, 717–724 (1986).

    Article  CAS  Google Scholar 

  21. Leventhal A. G., Rodieck, R. W. & Dreher, B. Retinal ganglion cell classes in the Old World monkey: Morphology and central projections. Science 213, 1139–1142 (1981).

    Article  CAS  Google Scholar 

  22. Leventhal, A. G., Ault, S. J. & Vitek, D. J. The nasotemporal division in primate retina: the neural bases of macular sparing and splitting. Science 240, 66–67 (1988).

    Article  CAS  Google Scholar 

  23. Leventhal, A. G., Thompson, K. G. & Liu, D. Retinal ganglion cells within the foveola of new world (Saimiri sciureus) and old world (Macaca fascicularis) monkeys. J. Comp. Neurol. 338, 242–254 (1993).

    Article  CAS  Google Scholar 

  24. Perry, V. H. & Cowey, A. The morphological correlates of X- and Y-like retinal ganglion cells in the retina of monkeys. Exp. Brain Res. 43, 226–228 (1981).

    Article  CAS  Google Scholar 

  25. Watanabe, M. & Rodieck, R. W. Parasol and midget ganglion cells of the primate retina. J. Comp. Neurol. 289, 434–454 (1989).

    Article  CAS  Google Scholar 

  26. Sato, H., Katsuyama, N., Tamura, H., Hata, Y. & Tsumoto, T. Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J. Physiol. (Lond.) 494, 757–771 (1996).

    Article  CAS  Google Scholar 

  27. Eysel, U. T., Shevelev, I. A., Lazareva, N. A., Sharaev, G. A. Orientation tuning and receptive field structure in cat striate neurons during local blockade of intracortical inhibition. Neuroscience. 84, 25–36 (1998).

    Article  CAS  Google Scholar 

  28. Sillito, A. M. Inhibitory processes underlying the directional specificity of simple, complex, and hypercomplex cells in the cat's striate cortex. J. Physiol. (Lond.) 271, 699–720 (1977).

    Article  CAS  Google Scholar 

  29. Sillito, A. M. Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J. Physiol. (Lond.) 289, 33–53 (1979).

    Article  CAS  Google Scholar 

  30. Volgushev, M., Pei, X., Vidyasagar, T. R. & Creutzfeldt, O. D. Excitation and inhibition in orientation selectivity of cat visual cortex neurons revealed by whole-cell recordings in vivo. Vis. Neurosci. 10, 1151–1155 (1993).

    Article  CAS  Google Scholar 

  31. Crook, J. M., Kisvarday, Z. F. & Eysel, U. T. Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur. J. Neurosci. 10, 2056–2075 (1998).

    Article  CAS  Google Scholar 

  32. McGeer, E. & McGeer, P. in Neurobiology of Aging (eds. Terry, R. D. & Gershon, S.) 389–403 (Raven, New York, 1976).

    Google Scholar 

  33. Dustman, R. E., Emmerson, R. Y. & Shearer, D. E. Life span changes in electrophysiological measures of inhibition. Brain Cogn. 30, 109–126 (1996).

    Article  CAS  Google Scholar 

  34. Scheibel, M., Lindsay, R., Tomiyasu, U. & Scheibel, A. Progressive dendritic changes in aging human cortex. Exp. Neurobiol. 47, 392–403 (1975).

    Article  CAS  Google Scholar 

  35. Vincent, S. L, Peters, A. & Tigges, J. Effects of aging on the neurons within area 17 of rhesus monkey cerebral cortex. Anat. Rec. 223, 329–341 (1989).

    Article  CAS  Google Scholar 

  36. Samorajski, T. Central neurotransmitter substances and aging: A review. J. Am. Ger. Soc. 25, 337–348 (1977).

    Article  CAS  Google Scholar 

  37. Peters, A., Josephson, K. & Vincent, S. L. Effects of aging on the neuroglial cells and pericytes within area 17 of the rhesus monkey cerbral cortex. Anat. Rec. 229, 384–398 (1991).

    Article  CAS  Google Scholar 

  38. Peters, A. & Sethares, C. Aging and the Meynart cells in rhesus monkey primary visual cortex. Anat. Rec. 236, 721–729 (1993).

    Article  CAS  Google Scholar 

  39. Kim, C. B. Y., Pier, L. P. & Spear, P. D. Effects of aging on numbers and sizes of neurons in histochemically defined subregions of monkey striate cortex. Anat. Rec. 247, 119–128 (1997).

    Article  CAS  Google Scholar 

  40. Peters, A., Nigro, N. J. & McNally, K. J. A further evaluation of the effect of age on striate cortex of the rhesus monkey. Neurobiol. Aging 18, 29–36 (1997).

    Article  CAS  Google Scholar 

  41. Peters, A., Morrison, J. H., Rosene D. L. & Hyman, B. T. Are neurons lost from the primate cerebral cortex during normal aging? Cereb. Cortex 8, 295–300 (1998).

    Article  CAS  Google Scholar 

  42. Fitzpatrick, D., Lund, J. S., Schmechel, D. E. & Towles, A. C. Distribution of GABAergic neurons and axon terminals in the macaque striate cortex. J. Comp. Neurol. 264, 73–91 (1987).

    Article  CAS  Google Scholar 

  43. Leventhal, A. G. & Hirsch, H. V. B. Receptive-field properties of different classes of neurons in visual cortex of normal and dark-reared cats. J. Neurophysiol. 43, 1111–1132 (1980).

    Article  CAS  Google Scholar 

  44. Sherman, S. M. & Spear, P. D. Organization of visual pathways in normal and visually deprived cats. Physiol. Rev. 62, 738–855 (1982).

    Article  CAS  Google Scholar 

  45. Tigges, J., Gordon, T. P., McClure, H. M., Hall, E. C. & Peters, A. Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center. Amer. J. Primatol. 15, 263–273 (1988).

    Article  Google Scholar 

  46. Walker, E. P. Mammals of the World (Johns Hopkins Univ. Press, Baltimore, 1975).

    Google Scholar 

  47. Schmolesky, M. T. et al. Signal timing across the macaque visual system. J. Neurophysiol. 79, 3272–3278 (1998).

    Article  CAS  Google Scholar 

  48. Leventhal, A. G., Thompson K. G., Liu, D., Zhou, Y. & Ault, S. J. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995).

    Article  CAS  Google Scholar 

  49. Pu, M. & Berson, D. A method for fast and stable intracellular staining of retinal ganglion cells. J. Neurosci. Methods 41, 45–49 (1992).

    Article  CAS  Google Scholar 

  50. Pu, M. Dendritic morphology of cat retinal ganglion cells projecting to suprachiasmatic nucleus. J. Comp. Neurol. 414, 267–274 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Raske of the Moran Eye center for performing ophthalmological examinations. This work was funded by NIH grants EY04951 and AG16148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Audie G. Leventhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmolesky, M., Wang, Y., Pu, M. et al. Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat Neurosci 3, 384–390 (2000). https://doi.org/10.1038/73957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing