Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord

An Erratum to this article was published on 01 July 2000

Abstract

Bone cancer pain is common among cancer patients and can have a devastating effect on their quality of life. A chief problem in designing new therapies for bone cancer pain is that it is unclear what mechanisms drive this distinct pain condition. Here we show that osteoprotegerin, a secreted ‘decoy’ receptor that inhibits osteoclast activity, also blocks behaviors indicative of pain in mice with bone cancer. A substantial part of the actions of osteoprotegerin seems to result from inhibition of tumor-induced bone destruction that in turn inhibits the neurochemical changes in the spinal cord that are thought to be involved in the generation and maintenance of cancer pain. These results demonstrate that excessive tumor-induced bone destruction is involved in the generation of bone cancer pain and that osteoprotegerin may provide an effective treatment for this common human condition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OPG abolishes sarcoma-induced bone destruction.
Figure 2: OPG reduces the number of osteoclasts and bone destruction in mice injected with sarcoma cells.
Figure 3: Inhibitory effects of OPG on sarcoma-induced bone destruction.
Figure 4: OPG blocks both spontaneous and evoked pain behaviors seen in sarcoma-injected mice.
Figure 5: Osteoprotegerin blocks astrocyte hypertrophy seen in the spinal cord 17 d after sarcoma injection in mice.

Similar content being viewed by others

References

  1. Banning, A., Sjogren, P. & Henriksen, H. Pain causes in 200 patients referred to a multidisciplinary cancer pain clinic. Pain 45, 45– 48 (1991).

    Article  CAS  Google Scholar 

  2. Coleman, R.E. et al. A randomised phase II study of oral pamidronate for the treatment of bone metastases from breast cancer. Eur. J. Cancer 34, 820–824 (1998).

    Article  CAS  Google Scholar 

  3. Coleman, R.E. How can we improve the treatment of bone metastases further? Curr. Opin. Oncol. 10, S7–13 ( 1998).

    PubMed  Google Scholar 

  4. Coleman, R.E. & Rubens, R.D. The clinical course of bone metastases from breast cancer. Br. J. Cancer 55, 61 –66 (1987).

    Article  CAS  Google Scholar 

  5. Rosier, R. Bone pain. Am. J. Hospice Palliative Care 9, 37 (1992).

    Article  CAS  Google Scholar 

  6. Lipton, A. Bisphosphonates and breast carcinoma. Cancer 80, 1668–1673 (1997).

    Article  CAS  Google Scholar 

  7. Fulfaro, F., Casuccio, A., Ticozzi, C. & Ripamonti, C. The role of bisphosphonates in the treatment of painful metastatic bone disease: a review of phase III trials. Pain 78, 157 –169 (1998).

    Article  CAS  Google Scholar 

  8. Mercadante, S. & Arcuri, E. Breakthrough pain in cancer patients: pathophysiology and treatment. Cancer Treat. Rev. 24 , 425–432 (1998).

    Article  CAS  Google Scholar 

  9. Mercadante, S. Malignant bone pain: pathophysiology and treatment. Pain 69, 1–18 (1997).

    Article  CAS  Google Scholar 

  10. Portenoy, R.K., Payne, D. & Jacobsen, P. Breakthrough pain: characteristics and impact in patients with cancer pain. Pain 81, 129– 134 (1999).

    Article  CAS  Google Scholar 

  11. Payne, R. Practice guidelines for cancer pain therapy. Issues pertinent to the revision of national guidelines. Oncology 12, 169 –175 (1998).

    CAS  PubMed  Google Scholar 

  12. Payne, R. Mechanisms and management of bone pain. Cancer 80, 1608–1613 (1997).

    Article  CAS  Google Scholar 

  13. Clohisy, D.R. & Ramnaraine, M.L. Osteoclasts are required for bone tumors to grow and destroy bone. J. Orthopaed. Res. 16, 660–666 (1998).

    Article  CAS  Google Scholar 

  14. Kong, Y.Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397 , 315–323 (1999).

    Article  CAS  Google Scholar 

  15. Simonet, W.S. et al. Osteoprotegerin—a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319 (1997).

    Article  CAS  Google Scholar 

  16. Lacey, D.L. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998).

    Article  CAS  Google Scholar 

  17. Schwei, M.J. et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J. Neurosci. 19, 10886–10897 (1999).

    Article  CAS  Google Scholar 

  18. Honore, P., Chapman, V., Buritova, J. & Besson, J.M. To what extent do spinal interactions between an α-2 adrenoceptor agonist and a mu opioid agonist influence noxiously evoked c-Fos expression in the rat—a pharmacological study. J. Pharmacol. Exp. Ther. 278, 393–403 (1996).

    CAS  PubMed  Google Scholar 

  19. Hunt, S.P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632– 634 (1987).

    Article  CAS  Google Scholar 

  20. Doyle, C.A. & Hunt, S.P. Substance P receptor (neurokinin-1)-expressing neurons in lamina I of the spinal cord encode for the intensity of noxious stimulation: a c-Fos study in rat. Neuroscience 89, 17–28 (1999).

    Article  CAS  Google Scholar 

  21. Woolf, C.J. et al. Towards a mechanism-based classification of pain. Pain 77, 227–229 ( 1998).

    Article  CAS  Google Scholar 

  22. Kostenuik, P.J., Morony, S., Capparelli, C., Lacey, D.L. & Dunstan, C.R. Comparison of the inhibitory effects of osteoprotegerin and of APD on PTHrP-mediated hypercalcemia and bone remodeling . J. Bone Miner. Res. 14, S166 (1999).

    Article  Google Scholar 

  23. Josien, R., Wong, B.R., Hong-Li, L., Steinman, R.M. & Choi, Y. TRANCE, a TNF family member is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J. Immunol. 162, 2562–2568 (1999).

    CAS  PubMed  Google Scholar 

  24. Delaisse, J.-M. & Vaes, G. in Biology and physiology of the osteoclast (eds. Rifkin, B. R. & Gay, C. V.) 289– 314 (CRC, Ann Arbor, 1992).

    Google Scholar 

  25. Olson, T.H., Riedl, M.S., Vulchanova, L., Ortiz-Gonzalez, X.R. & Elde, R. An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats. Neuroreport 9, 1109–1113 (1998).

    Article  CAS  Google Scholar 

  26. Sorkin, L.S., Xiao, W.H., Wagner, R. & Myers, R.R. Tumour necrosis factor-α induces ectopic activity in nociceptive primary afferent fibres . Neuroscience 81, 255– 262 (1997).

    Article  CAS  Google Scholar 

  27. Tonussi, C.R. & Ferreira, S.H. Tumour necrosis factor-α mediates carrageenin-induced knee-joint incapacitation and also triggers overt nociception in previously inflamed rat knee-joints. Pain 82, 81–87 (1999).

    Article  CAS  Google Scholar 

  28. O'Connell, J.X., Nanthakumar, S.S., Nielsen, G.P. & Rosenberg, A.E. Osteoid osteoma: the uniquely innervated bone tumor. Modern Pathol. 11, 175–180 ( 1998).

    CAS  Google Scholar 

  29. Bjurholm, A., Kreicbergs, A., Brodin, E. & Schultzberg, M. Substance P- and CGRP-immunoreactive nerves in bone. Peptides 9, 165–171 (1998).

    Article  Google Scholar 

  30. Hill, E.L. & Elde, R. Distribution of CGRP-, VIP-, DβH-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 264, 469–480 (1991).

    Article  CAS  Google Scholar 

  31. Tabarowski, Z., Gibson-Berry, K. & Felten, S. Y. Noradrenergic and peptidergic innervation of the mouse femur bone marrow. Acta Histochemica 98, 453–457 (1996).

    Article  CAS  Google Scholar 

  32. Goni, M.H. & Tolis, G. Hypercalcemia of cancer: an update . Anticancer Res. 13, 1155– 1160 (1993).

    CAS  PubMed  Google Scholar 

  33. Suzuki, K. & Yamada, S. Ascites sarcoma 180, a tumor associated with hypercalcemia, secretes potent bone-resorbing factors including transforming growth factor alpha, interleukin-1 alpha and interleukin-6. Bone Mineral 27, 219–233 ( 1994).

    Article  CAS  Google Scholar 

  34. Watkins, L.R. et al. Characterization of cytokine-induced hyperalgesia. Brain Res. 654, 15–26 ( 1994).

    Article  CAS  Google Scholar 

  35. Safieh-Garabedian, B., Poole, S., Allchorne, A., Winter, J. & Woolf, C.J. Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br. J. Pharmacol. 115, 1265–1275 (1995).

    Article  CAS  Google Scholar 

  36. Woolf, C.J., Allchorne, A., Safieh-Garabedian, B. & Poole, S. Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor α. Br. J. Pharmacol. 121, 417–424 (1997).

    Article  CAS  Google Scholar 

  37. Draisci, G., Kajander, K.C., Dubner, R., Bennett, G.J. & Iadarola, M.J. Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation . Brain Res. 560, 186–192 (1991).

    Article  CAS  Google Scholar 

  38. Ruda, M.A., Iadarola, M.J., Cohen, L.V. & Young, W.S. d. In situ hybridization histochemistry and immunocytochemistry reveal an increase in spinal dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc. Natl. Acad. Sci. USA 85, 622–626 (1998).

    Article  Google Scholar 

  39. Colburn, R.W. et al. Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J. Neuroimmunol. 79, 163–175 ( 1997).

    Article  CAS  Google Scholar 

  40. Colburn, R.W., Rickman, A.J. & DeLeo, J.A. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp. Neurol. 157, 289–304 (1999).

    Article  CAS  Google Scholar 

  41. Honore, P. et al. Spinal substance P receptor expression and internalization in acute, short-term, and long-term inflammatory pain states. J. Neurosci. 19, 7670–7678 (1999).

    Article  CAS  Google Scholar 

  42. Catheline, G., Le Guen, S., Honore, P. & Besson, J.M. Are there long-term changes in the basal or evoked Fos expression in the dorsal horn of the spinal cord of the mononeuropathic rat? Pain 80, 347–357 (1999).

    Article  CAS  Google Scholar 

  43. Abbadie, C., Trafton, J., Liu, H., Mantyh, P.W. & Basbaum, A.I. Inflammation increases the distribution of dorsal horn neurons that internalize the neurokinin-1 receptor in response to noxious and non-noxious stimulation. J. Neurosci. 17, 8049–8060 (1997).

    Article  CAS  Google Scholar 

  44. Abbadie, C. & Besson, J.-M. c-fos expression in rat lumbar spinal cord following peripheral stimulation in adjuvant-induced arthritis and in normal rats. Brain Res. 607, 195– 204 (1993).

    Article  CAS  Google Scholar 

  45. Bekker, P.J., Holloway, D., Nakanishi, A., Arrighi, H.M. & Dunstan, C.R. Osteoprotegerin (OPG) has potent and sustained anti-resoptive activity in postmenopausal women. J. Bone Mineral Res. 14, S180 ( 1999).

    Google Scholar 

  46. Kong. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  Google Scholar 

  47. Mantyh, P.W. et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 268, 1629–1632 (1995).

    Article  CAS  Google Scholar 

  48. Mantyh, P.W. et al. Rapid endocytosis of a G protein-coupled receptor: substance P evoked internalization of its receptor in the rat striatum in vivo. Proc. Natl. Acad. Sci. USA 92, 2622– 2626 (1995).

    Article  CAS  Google Scholar 

  49. Mantyh, P.W. et al. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278, 275–279 (1997).

    Article  CAS  Google Scholar 

  50. Molander, C., Xu, Q. & Grant, G. The cytoarchitectonic organization of the spinal cord in the rat: I. The lower thoracic and lumbosacral cord. J. Comp. Neurol. 230 , 133–141 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lacey at Amgen (Thousand Oaks, California) for comments on the manuscript and J. Schmidt for technical assistance. This work was supported by a Merit Review from the Veterans Administration, National Institutes of Health grants from the National Institute of Neurological Disorders and Stroke (NS23970) and the National Institute for Drug Abuse (11986), National Institute of Dental and Craniofacial Research training grant DEO7288, National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR43595), the Roby C. Thompson, Jr. Endowment in Musculoskeletal Oncology, a Dentist Scientist Award (DSA) DE00270, and a grant from the University of Minnesota Academic Health Center Strategic Initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denis R. Clohisy or Patrick W. Mantyh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honore, P., Luger, N., Sabino, M. et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6, 521–528 (2000). https://doi.org/10.1038/74999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/74999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing