Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A direct quantitative relationship between the functional properties of human and macaque V5

Abstract

The nature of the quantitative relationship between single-neuron recordings in monkeys and functional magnetic resonance imaging (fMRI) measurements in humans is crucial to understanding how experiments in these different species are related, yet it remains undetermined. We measured brain activity in humans attending to moving visual stimuli, using blood oxygenation level-dependent (BOLD) fMRI. Responses in V5 showed a strong and highly linear dependence on increasing strength of motion signal (coherence). These population responses in human V5 had a remarkably simple mathematical relationship to previously observed single-cell responses in macaque V5. We provided an explicit quantitative estimate for the interspecies comparison of single-neuron activity and BOLD population responses. Our data show previously unknown dissociations between the functional properties of human V5 and other human motion-sensitive areas, thus predicting similar dissociations for the properties of single neurons in homologous areas of macaque cortex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental paradigm and behavioral results.
Figure 2: Polynomial expansion, introduced in terms of the hemodynamic response function typically used in event-related fMRI.
Figure 3: Brain areas showing a linear relationship with stimulus coherence.
Figure 4: fMRI responses to stimulus coherence in three representative cortical areas.
Figure 5: Reliability of responses across subjects in V5.

References

  1. Zeki, S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. (Lond.) 236, 549–573 (1974).

    Article  CAS  Google Scholar 

  2. Allman, J. M. & Kaas, J. H. A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Res. 81, 199– 213 (1974).

    Article  CAS  Google Scholar 

  3. Parker, A. J. & Newsome, W. T. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21, 227–277 (1998).

    Article  CAS  Google Scholar 

  4. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745– 4765 (1992).

    Article  CAS  Google Scholar 

  5. Newsome, W. T. & Pare, E. B. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8, 2201–2211 (1988).

    Article  CAS  Google Scholar 

  6. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174– 177 (1990).

    Article  CAS  Google Scholar 

  7. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  8. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641– 649 (1991).

    Article  CAS  Google Scholar 

  9. Tootell, R. B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  10. Kwong, K. K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 ( 1992).

    Article  CAS  Google Scholar 

  11. Logothetis, N. K., Guggenberger, H., Peled, S. & Pauls, J. Functional imaging of the monkey brain. Nat. Neurosci. 2, 555–562 (1999).

    Article  CAS  Google Scholar 

  12. Scannell, J. W. Young, M. P. Neuronal population activity and functional imaging. Proc. R. Soc. Lond. Biol. Sci. 266(1422), 875–881 (1999 ).

    Article  Google Scholar 

  13. Heeger, D. J., Boynton, G. M., Demb, J. B., Seidemann, E. & Newsome, W. T. Motion opponency in visual cortex . J. Neurosci. 19, 7162– 7174 (1999).

    Article  CAS  Google Scholar 

  14. Wandell, B. A. Computational neuroimaging of human visual cortex. Annu. Rev. Neurosci. 22, 145–173 ( 1999).

    Article  CAS  Google Scholar 

  15. Josephs, O. & Henson, R. N. Event-related functional magnetic resonance imaging: modelling, inference and optimization. Phil. Trans. R. Soc. Lond. B Biol. Sci. 354, 1215– 1228 (1999).

    Article  CAS  Google Scholar 

  16. Raymond, J. E. Directional anisotropy of motion sensitivity across the visual field. Vision Res. 34, 1029–1037 (1994).

    Article  CAS  Google Scholar 

  17. Buchel, C., Wise, R. J., Mummery, C. J., Poline, J. B. & Friston, K. J. Nonlinear regression in parametric activation studies. Neuroimage 4, 60– 66 (1996).

    Article  CAS  Google Scholar 

  18. Watson, J. D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex 3, 79–94 ( 1993).

    Article  CAS  Google Scholar 

  19. Van Oostende, S., Sunaert, S., Van Hecke, P., Marchal, G. & Orban, G. A. The kinetic occipital (KO) region in man: an fMRI study. Cereb. Cortex 7, 690–701 (1997).

    Article  CAS  Google Scholar 

  20. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382 –2386 (1996).

    Article  CAS  Google Scholar 

  21. Zeki, S. The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 207, 239–248 (1980).

    Article  CAS  Google Scholar 

  22. Malonek, D., Tootell, R. B. & Grinvald, A. Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc. R. Soc. Lond. B Biol. Sci. 258, 109– 119 (1994).

    Article  CAS  Google Scholar 

  23. Friston, K. J., Holmes, A. P. & Worsley, K. J. How many subjects constitute a study? Neuroimage 10, 1–5 ( 1999).

    Article  CAS  Google Scholar 

  24. Dupont, P. et al. The kinetic occipital region in human visual cortex. Cereb. Cortex 7, 283–292 (1997).

    Article  CAS  Google Scholar 

  25. Albright, T. D., Desimone, R. & Gross, C. G. Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51, 16–31 (1984).

    Article  CAS  Google Scholar 

  26. Maunsell, J. H. & Van Essen, D. C. Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    Article  CAS  Google Scholar 

  27. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106– 1130 (1984).

    Article  CAS  Google Scholar 

  28. Britten, K. H. & Newsome, W. T. Tuning bandwidths for near-threshold stimuli in area MT. J. Neurophysiol. 80, 762–770 (1998).

    Article  CAS  Google Scholar 

  29. Adelson, E. H. & Bergen, J. R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. [A] 2, 284–299 ( 1985).

    Article  CAS  Google Scholar 

  30. Simoncelli, E. P. & Heeger, D. J. A model of neuronal responses in visual area MT. Vision Res. 38, 743–761 (1998).

    Article  CAS  Google Scholar 

  31. Carter, C. S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    Article  CAS  Google Scholar 

  32. Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate cortex to behaviour . Brain 118, 279–306 (1995).

    Article  Google Scholar 

  33. Tootell, R. B. et al. Functional analysis of V3A and related areas in human visual cortex. J. Neurosci. 17, 7060– 7078 (1997).

    Article  CAS  Google Scholar 

  34. Scase, M. O., Braddick, O. J. & Raymond, J. E. What is noise for the motion system? Vision Res. 36, 2579–2586 (1996).

    Article  CAS  Google Scholar 

  35. Talairach, J. & Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain (Georg Thieme Verlag, New York, 1988 ).

    Google Scholar 

  36. Friston, K. J. et al. Spatial realignment and normalisation of images. Hum. Brain Mapp. 2, 165–189 (1995).

    Article  Google Scholar 

  37. Turner, R., Howseman, A., Rees, G. E., Josephs, O. & Friston, K. Functional magnetic resonance imaging of the human brain: data acquisition and analysis. Exp. Brain Res. 123, 5–12 ( 1998).

    Article  CAS  Google Scholar 

  38. Friston, K. J. et al. Statistical parametric mapping in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189 –210 (1995).

    Article  Google Scholar 

  39. Buchel, C., Holmes, A. P., Rees, G. & Friston, K. J. Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments. Neuroimage 8, 140– 149 (1998).

    Article  CAS  Google Scholar 

  40. Draper, N. R. & Smith, H. Applied Regression Analysis (Wiley, New York, 1981).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, the Keck Foundation, the National Science Foundation and the National Insitutes of Mental Health. We thank K.H. Britten for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraint Rees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3, 716–723 (2000). https://doi.org/10.1038/76673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing