Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An induction gene trap for identifying a homeoprotein-regulated locus

Abstract

An important issue in developmental biology is the identification of homeoprotein target genes. We have developed a strategy based on the internalization and nuclear addressing of exogenous homeodomains, using an engrailed homeodomain (EnHD) to screen an embryonic stem (ES) cell gene trap library. Eight integrated gene trap loci responded to EnHD. One is within the bullous pemphigoid antigen 1 (BPAG1) locus, in a region that interrupts two neural isoforms. By combining in vivo electroporation with organotypic cultures, we show that an already identified BPAG1 enhancer/promoter is differentially regulated by homeoproteins Hoxc-8 and Engrailed in the embryonic spinal cord and mesencephalon. This strategy can therefore be used for identifying and mutating homeoprotein targets. Because homeodomain third helices can internalize proteins, peptides, phosphopeptides, and antisense oligonucleotides, this strategy should be applicable to other intracellular targets for characterizing genetic networks involved in a large number of physiopathological states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The induction gene trap strategy.
Figure 2: Purified EnHD binds DNA and is internalized by ES cells.
Figure 3: BPAG1 trapped locus is regulated by EnHD.
Figure 4: BPAG1 promoter/enhancer is a neural homeoprotein response element.

Similar content being viewed by others

References

  1. Gehring, W.J. et al. Homeodomain-DNA recognition. Cell 78, 211–223 (1994).

    Article  CAS  Google Scholar 

  2. Boncinelli, E. Homeobox genes and disease. Curr. Opin. Genet. Dev. 7, 331–337 (1997).

    Article  CAS  Google Scholar 

  3. Hill, D.P. & Wurst, W. Screening for novel pattern formation genes using trap approaches. Methods Enzymol. 225, 664–681 (1993).

    Article  CAS  Google Scholar 

  4. Forrester, L.M. et al. An induction gene trap screen in embryonic stem cells: identification of genes that respond to retinoic acid in vitro Proc. Natl. Acad. Sci. USA 93, 1677–1682 (1996).

    Article  CAS  Google Scholar 

  5. Joliot, A., Pernelle, C., Deagostini-Bazin, H. & Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis Proc. Natl. Acad. Sci. USA 88, 1864–1868 (1991).

    Article  CAS  Google Scholar 

  6. Joliot, A.H., Triller, A., Volovitch, M., Pernelle, C. & Prochiantz, A. a-2,8-Polysialic acid is the neuronal surface receptor of Antennapedia homeobox peptide. The New Biologist 3, 1121–1134 (1991).

    CAS  PubMed  Google Scholar 

  7. Chatelin, L., Volovitch, M., Joliot, A.H., Perez, F. & Prochiantz, A. Transcription factor Hoxa-5 is taken up by cells in culture and conveyed to their nuclei. Mech. Dev. 55, 111–117 (1996).

    Article  CAS  Google Scholar 

  8. Bloch-Gallego, E. et al. Antennapedia homeobox peptide enhances growth and branching of embryonic chicken motoneurons in vitro. J. Cell Biol. 120, 485–492 (1993).

    Article  CAS  Google Scholar 

  9. Le Roux, I., Joliot, A.H., Bloch-Gallego, E., Prochiantz, A. & Volovitch, M. Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties. Proc. Natl. Acad. Sci. USA 90, 9120–9124 (1993).

    Article  CAS  Google Scholar 

  10. Le Roux, I., Duharcourt, S., Volovitch, M., Prochiantz, A. & Ronchi, E. Promoter-specific regulation of genes expression by an exogenously added homeodomain that promotes neurite growth. FEBS Lett. 368, 311–314 (1995).

    Article  CAS  Google Scholar 

  11. Mainguy, G. et al. Regulation of epidermal bullous pemphigoid antigen 1 (BPAG1) synthesis by homeoprotein transcription factors. J. Invest. Dermatol. 113, 643–650 (1999).

    Article  CAS  Google Scholar 

  12. Davis, C.A., Holmyard, D.P., Millen, K.J. & Joyner, A.L. Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111, 287–298 (1991).

    CAS  PubMed  Google Scholar 

  13. Biggin, M.D. & McGinnis, W. Regulation of segmentation and segmental identity by Drosophila homeoproteins: the role of DNA binding in functional activity and specificity. Development 124, 4425–4433 (1997).

    CAS  PubMed  Google Scholar 

  14. Damante, G. et al. A molecular code dictates sequence-specific DNA recognition by homeodomains. EMBO J. 15, 4992–5000 (1996).

    Article  CAS  Google Scholar 

  15. Tolkunova, E.N., Fujioka, M., Kobayashi, M., Deka, D. & Jaynes, J.B. Two distinct types of repression domain in Engrailed: one interacts with the Groucho corepressor and is preferentially active on integrated target genes. Mol. Cell. Biol. 18, 2804–2814 (1998).

    Article  CAS  Google Scholar 

  16. Brown, A., Dalpe, G., Mathieu, M. & Kothary, R. Cloning and characterization of the neural isoforms of human dystonin. Genomics 29, 777–780 (1995).

    Article  CAS  Google Scholar 

  17. Sawamura, D. et al. Mouse 230-kDa bullous pemphigoid antigen gene: structural and functional characterization of the 5′-flanking region and interspecies conservation of the deduced amino-terminal peptide sequence of the protein. J. Invest. Dermatol. 103, 651–655 (1994).

    Article  CAS  Google Scholar 

  18. Yang, Y. et al. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86, 655–665 (1996).

    Article  CAS  Google Scholar 

  19. Leung, C.L., Sun, D. & Liem, R.K. The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons. J. Cell Biol. 144, 435–446 (1999).

    Article  CAS  Google Scholar 

  20. Yang, Y. et al. Integrators of the cytoskeleton that stabilize microtubules. Cell 98, 229–238 (1999).

    Article  CAS  Google Scholar 

  21. Muramatsu, T., Mizutani, Y., Ohmori, Y. & Okumura, J. Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380 (1997).

    Article  CAS  Google Scholar 

  22. Gitton, Y., Cohen-Tannoudji, M. & Wassef, M. Specification of somatosensory area identity in cortical explants. J. Neurosci. 19, 4889–4898 (1999).

    Article  CAS  Google Scholar 

  23. Derossi, D., Chassaing, G. & Prochiantz, A. Trojan peptides: the penetration system for intracellular delivery. Trends Cell Biol. 8, 84–87 (1998).

    Article  CAS  Google Scholar 

  24. Brown, A., Bernier, G., Mathieu, M., Rossant, J. & Kothary, R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat. Genet. 10, 301–306 (1995).

    Article  CAS  Google Scholar 

  25. Guo, L. et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233–243 (1995).

    Article  CAS  Google Scholar 

  26. Winnier, A.R. et al. UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev. 13, 2774–2786 (1999).

    Article  CAS  Google Scholar 

  27. Le Mouellic, H., Lallemand, Y. & Brulet, P. Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69, 251–264 (1992).

    Article  CAS  Google Scholar 

  28. Tiret, L., Le Mouellic, H., Maury, M. & Brulet, P. Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice. Development 125, 279–291 (1998).

    CAS  PubMed  Google Scholar 

  29. Saueressig, H., Burrill, J. & Goulding, M. Engrailed-1 and netrin-1 regulate axon pathfinding by association interneurons that project to motor neurons. Development 126, 4201–4212 (1999).

    CAS  PubMed  Google Scholar 

  30. Hinz, U., Wolk, A. & Renkawitz-Pohl, R. Ultrabithorax is a regulator of beta3 tubulin expression in the Drosophila visceral mesoderm. Development 116, 543–554 (1992).

    CAS  PubMed  Google Scholar 

  31. Serrano, N., Brock, H.W. & Maschat, F. Beta3 tubulin is directly repressed by the Engrailed protein in Drosophila. Development 124, 2527–2536 (1997).

    CAS  PubMed  Google Scholar 

  32. Li, K. & Kaufman, T.C. The homeotic target gene centrosomin encodes an essential centrosomal component. Cell 85, 585–596 (1996).

    Article  CAS  Google Scholar 

  33. Ding, M. et al. Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia. J. Mol. Neurosci. 8, 93–113 (1997).

    Article  CAS  Google Scholar 

  34. Prochiantz, A. Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr. Opin. Neurobiol. 6, 629–634 (1996).

    Article  CAS  Google Scholar 

  35. Joliot, A. et al. Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr. Biol. 8, 856–863 (1998).

    Article  CAS  Google Scholar 

  36. Pooga, M. et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16, 857–861 (1998).

    Article  CAS  Google Scholar 

  37. Wurst, W. & Joyner, A. In Gene targeting: a practical approach (ed. Joyner, A.L.) (Oxford Univ. Press, New York, NY; 1993).

    Google Scholar 

  38. Chamak, B. & Prochiantz, A. Influence of extracellular matrix proteins on the expression of neuronal polarity. Development 106, 483–491 (1989).

    CAS  PubMed  Google Scholar 

  39. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the mouse embryo. A laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1994).

    Google Scholar 

  40. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs C. Théry and M. Wassef for critical reading of the manuscript. We are grateful to Dr. A. Nagy for R1 ES cells, Dr. W. Skarnes for GT1 vector, Dr. S. Saule for providing us with Chick En-2 cDNA, and Dr A. Joyner for many helpful discussions. This work was supported by grants from Association Francaise contre les Myopathies, EC BIOTECH 960146 and HFSPO RG83/96 (to A.P and W.W.), fellowship from EMBO (M.L.M.), and the Deutsche Forschungsgemeinschaft SFP 190 (W.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Wurst or Alain Prochiantz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainguy, G., Luz Montesinos, M., Lesaffre, B. et al. An induction gene trap for identifying a homeoprotein-regulated locus. Nat Biotechnol 18, 746–749 (2000). https://doi.org/10.1038/77312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing