Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibitory control of neostriatal projection neurons by GABAergic interneurons

Abstract

The basal ganglia are a highly interconnected network of nuclei essential for the modulation and execution of voluntary behavior. The neostriatum is the principal input and one of the principal controllers of the output of the basal ganglia. Neostriatal projection neurons seem to be dynamically and powerfully controlled by GABAergic inputs, but the source(s) and physiological properties of these inputs remain unclear. Here we use paired whole-cell recordings to show that this inhibition derives from small populations of GABAergic interneurons that are themselves interconnected through functional electrotonic synapses. Inhibitory synaptic potentials generated from single interneurons are sufficiently powerful to delay or entirely block the generation of action potentials in a large number of projection neurons simultaneously.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the membrane properties of recorded neurons.
Figure 2: Camera lucida reconstruction of spiny projection and FS neurons.
Figure 3: Electrical coupling between two FS interneurons.
Figure 4: Properties of IPSPs elicited in spiny projection cells by FS and LTS interneurons.
Figure 5: Interneuronal modulation of action potential generation in spiny projection neurons.

References

  1. Bolam, J. P. & Bennett, B. D. in Molecular and Cellular Mechanisms of Neostriatal Function (eds. Marjorie, A., Ariano, M. A. & Surmeier, D. J.) 1–2 (Springer, Heidelberg, 1993).

    Google Scholar 

  2. Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol. 12 Integrated Systems of the CNS (eds. Swanson, L. W., Björklund, A. & Hökfelt, T.) 371–468 (Elsevier Science B.V., Amsterdam, 1996).

    Google Scholar 

  3. Wilson, C. J. & Kawaguchi, Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996).

    Article  CAS  Google Scholar 

  4. Wilson, C. J., Chang, H. T. & Kitai, S. T. Origins of post synaptic potentials evoked in spiny neostriatal projection neurons by thalamic stimulation in the rat. Exp. Brain Res. 51, 217–226 (1983).

    CAS  PubMed  Google Scholar 

  5. Wilson, C. J. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S. F.) 141–171 (Academic, San Diego, 1992).

    Book  Google Scholar 

  6. Lighthall, J. W., Park, M. R. & Kitai, S. T. Inhibition in slices of rat neostriatum. Brain Res. 212, 182–187 (1981).

    Article  CAS  Google Scholar 

  7. Lighthall, J. W. & Kitai, S. T. A short duration GABAergic inhibition in identified neostriatal medium spiny neurons: in vitro slice study. Brain Res. Bull. 11, 103–110 (1983).

    Article  CAS  Google Scholar 

  8. Calabresi, P., Mercuri, N. B., Stefani, A. & Bernardi, G. Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J. Neurophysiol. 63, 651–662 (1990).

    Article  CAS  Google Scholar 

  9. Kita, H. Glutamatergic and GABAergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations. Neuroscience 70, 925–940 ( 1996).

    Article  CAS  Google Scholar 

  10. Nisenbaum, E. S. & Berger, T. W. Functionally distinct subpopulations of striatal neurons are differentially regulated by GABAergic and dopaminergic inputs—I. In vivo analysis. Neuroscience 48, 561–578 (1992).

    Article  CAS  Google Scholar 

  11. Yoshida, M., Nagatsuka, Y., Muramatsu, S. & Niijima, K. Differential roles of the caudate nucleus and putamen in motor behavior of the cat as investigated by local injection of GABA antagonists. Neurosci. Res. 10, 34–51 (1991).

    Article  CAS  Google Scholar 

  12. Yamada, H., Fujimoto, K. & Yoshida, M. Neuronal mechanism underlying dystonia induced by bicuculline injection into the putamen of the cat. Brain Res. 677 , 333–336 (1995).

    Article  CAS  Google Scholar 

  13. Wilson, C. J. & Groves, P. M. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular injection of horseradish peroxidase. J. Comp. Neurol. 194, 599–615 (1980).

    Article  CAS  Google Scholar 

  14. Jaeger, D., Kita, H. & Wilson, C. J. Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. J. Neurophysiol. 72, 1–4 (1994).

    Article  Google Scholar 

  15. Kita, H. GABAergic circuits of the striatum. Prog. Brain Res. 99, 51–72 (1993).

    Article  CAS  Google Scholar 

  16. Dodt, H. U. & Zieglgansberger, W. Visualizing unstained neurons in living brain slices by infrared DIC—videomicroscopy. Brain Res. 537, 333–336 (1990).

    Article  CAS  Google Scholar 

  17. Kawaguchi, Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J. Neurosci. 13, 4908–4923 (1993).

    Article  CAS  Google Scholar 

  18. Miles, R. & Poncer, J. C. Paired recordings from neurones. Curr. Opin. Neurobiol. 6, 387– 394 (1996).

    Article  CAS  Google Scholar 

  19. Kita, T., Kita, H. & Kitai, S. T. Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation. Brain Res. 300, 129–139 (1984).

    Article  CAS  Google Scholar 

  20. Kita, H., Kita, T. & Kitai, S. T. Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp. Brain. Res. 60, 54–62 (1985).

    CAS  PubMed  Google Scholar 

  21. Kawaguchi, Y., Wilson, C. J. & Emson, P. C. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J. Neurophysiol. 62, 1052– 1068 (1989).

    Article  CAS  Google Scholar 

  22. Nisenbaum, E. S., Xu, Z. C. & Wilson, C. J. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J. Neurophysiol. 71, 1174–1189 (1994).

    Article  CAS  Google Scholar 

  23. Tepper, J. M. & Trent, F. In vivo studies of the postnatal development of rat neostriatal neurons. Prog. Brain Res. 99, 35–50 (1993).

    Article  CAS  Google Scholar 

  24. Tepper, J. M., Sharpe, N. A., Koós, T. Z. & Trent, F. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev. Neurosci. 20 , 125–145 (1998).

    Article  CAS  Google Scholar 

  25. Kawaguchi, Y., Wilson, C. J., Augood, S. J. & Emson, P. C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527– 535 (1995).

    Article  CAS  Google Scholar 

  26. Kita, H., Kosaka, T. & Heizmann, C. W. Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res. 536, 1–15 (1990).

    Article  CAS  Google Scholar 

  27. Bennett, B. D. & Bolam, J. P. Synaptic input and output of parvalbumin immunoreactive neurons in the neostriatum of the rat. Neuroscience 62, 707– 719 (1994).

    Article  CAS  Google Scholar 

  28. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  Google Scholar 

  29. Wickens, J. R., Kötter, R. & Alexander, M. E. Effects of local connectivity on striatal function: stimulation and analysis of a model. Synapse 20, 281–298 (1995).

    Article  CAS  Google Scholar 

  30. Groves, P. M. A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Res. 286, 109–132 (1983).

    Article  CAS  Google Scholar 

  31. Rinzel, J., Terman, D., Wang, X. & Ermentrout, B. Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279, 1351–1355 ( 1998).

    Article  CAS  Google Scholar 

  32. Whittington, M. A., Traub, R. D. & Jefferys, J. G. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995).

    Article  CAS  Google Scholar 

  33. Parthasarathy, H. B. & Graybiel, A. M. Cortically driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the Squirrel monkey. J. Neurosci. 17, 2477–2491 (1997).

    Article  CAS  Google Scholar 

  34. Freund, T. F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  Google Scholar 

  35. Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O. & Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995).

    Article  CAS  Google Scholar 

  36. Xiang, Z., Huguenard, J. R. & Prince, D. A. Cholinergic switching within neocortical inhibitory networks. Science 281, 985– 988 (1998).

    Article  CAS  Google Scholar 

  37. Lenz, S., Perney, T. M., Qin, Y., Robbins, E. & Chesselet, M. F. GABA-ergic interneurons of the striatum express the Shaw-like potassium channel, Kv3.1 Synapse 18, 55–66 (1994).

    Article  CAS  Google Scholar 

  38. Nicola, S. M. & Malenka, R. C. Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J. Neurosci. 17, 5697– 5710 (1997).

    Article  CAS  Google Scholar 

  39. Pennartz, C. M. A., Dolleman-Van Der Weel, M. J., Kitai, S. T. & Da Silva, F. H. L. Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro . J. Neurophysiol. 67, 1325– 1334 (1992).

    Article  CAS  Google Scholar 

  40. Chang, H. T. & Kita, H. Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res. 574, 307–311 ( 1992).

    Article  CAS  Google Scholar 

  41. Bevan, M. D., Booth, P. A. C., Eaton, S. A. & Bolam, J. P. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J. Neurosci. 18, 9438–9452 (1998).

    Article  CAS  Google Scholar 

  42. Jiang, Z. G. & North, R. A. Membrane properties and synaptic responses of rat striatal neurones in vitro. J. Physiol. (Lond.) 443, 533–553 ( 1991).

    Article  CAS  Google Scholar 

  43. Barry, P. H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Methods 51, 107–116 ( 1994).

    Article  CAS  Google Scholar 

  44. Ng, B. & Barry, P. H. The measurement of ionic conductivities and mobilities of certain less common organic ions needed for junction potential corrections in electrophysiology. J. Neurosci. Methods 56, 37–41 (1995).

    Article  CAS  Google Scholar 

  45. Horikawa, K. & Armstrong, W. E. A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J. Neurosci. Methods 25, 1– 11 (1988).

    Article  CAS  Google Scholar 

  46. Oorschot, D. E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol. 366, 580–599 (1996).

    Article  CAS  Google Scholar 

  47. Kincaid, A. E., Zheng, T. & Wilson, C. J. Connectivity and convergence of single corticostriatal axons. J. Neurosci. 18, 4722– 4731 (1998).

    Article  CAS  Google Scholar 

  48. Plenz, D. & Kitai, S.T. Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex-striatum-substantia nigra organotypic cultures. J. Neurosci. 18, 266–283 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Moore and K. Pang for help during the early phase of this experiments, J.P. Bolam, A. Sík and L. Záborszky for advice concerning anatomical methods, G. Buzsáki, A. Czurkó, A. Göndöcs, C. Paladini and D. Shohamy for critically reviewing the manuscript and F. Shah for technical assistance. Supported by MH58885, NS34865 and Rutgers University Busch-BRSG funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Tepper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koós, T., Tepper, J. Inhibitory control of neostriatal projection neurons by GABAergic interneurons . Nat Neurosci 2, 467–472 (1999). https://doi.org/10.1038/8138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing