Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex

Abstract

During development of the cerebral cortex, the invasion of thalamic axons and subsequent differentiation of cortical neurons are tightly coordinated. Here we provide evidence that glutamate neurotransmission triggers a critical signaling mechanism involving the activation of phospholipase C-β1 (PLC-β1) by metabotropic glutamate receptors (mGluRs). Homozygous null mutation of either PLC-β1 or mGluR5 dramatically disrupts the cytoarchitectural differentiation of 'barrels' in the mouse somatosensory cortex, despite segregation in the pattern of thalamic innervation. Furthermore, group 1 mGluR-stimulated phosphoinositide hydrolysis is dramatically reduced in PLC-β1−/− mice during barrel development. Our data indicate that PLC-β1 activation via mGluR5 is critical for the coordinated development of the neocortex, and that presynaptic and postsynaptic components of cortical differentiation can be genetically dissociated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failure of cortical barrel formation in PLC-β1−/− mice.
Figure 2: Thalamocortical axons segregate into a barrel pattern in PLC-β1−/− mice.
Figure 3: Despite partial thalamocortical segregation, mGluR5−/− mice fail to form normal cortical barrels.
Figure 4: Lithium chloride-amplified agonist-induced inositol phosphate (IP) generation from cortical synaptoneurosome preparations at one week and over three weeks of age.

References

  1. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1139 (1996).

    Article  CAS  Google Scholar 

  2. Woolsey, D. H. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex. Brain Res. 17, 205–242 (1970).

    Article  CAS  Google Scholar 

  3. Woolsey, T. A., Dierker, M. L. & Wann, D. F. Mouse SmI cortex: qualitative and quantitative classification of golgi-impregnated barrel neurons. Proc. Natl. Acad. Sci. USA 72, 2165–2169 (1975).

    Article  CAS  Google Scholar 

  4. Killackey, H. P. & Belford, G. R. The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J. Comp. Neurol. 183, 285–304 (1979).

    Article  CAS  Google Scholar 

  5. O'Leary, D. D. M., Ruff, N. L. & Dyck, R. H. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4, 535–544 (1994).

    Article  CAS  Google Scholar 

  6. Agmon, A., Yang, L. T., Jones, E. G. & O'Dowd, D. K. Topological precision in the thalamic projection to neonatal mouse barrel cortex. J. Neurosci. 15, 549–561 (1995).

    Article  CAS  Google Scholar 

  7. Van der Loos, H. & Woolsey, T. A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395–398 (1973).

    Article  CAS  Google Scholar 

  8. Greenough, W. T. & Chang, F.-L. F. Dendritic pattern formation involves both oriented regression and oriented growth of barrels of mouse somatosensory cortex. Brain Res. Dev. Brain Res. 43, 148–152 (1988).

    Article  Google Scholar 

  9. Schlaggar, B. L. & O'Leary D. D. Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252, 1556–1560 (1991).

    Article  CAS  Google Scholar 

  10. Welker, E. et al. Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science 271, 1864–1867 (1996).

    Article  CAS  Google Scholar 

  11. Abdel-Majid, R. M. et al. Loss of adenylyl cyclase I activity disrupts patterning of mouse somatosensory cortex. Nat. Genet. 19, 289–291 (1998).

    Article  CAS  Google Scholar 

  12. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  CAS  Google Scholar 

  13. Kind, P. C., Blakemore, C., Fryer, H. & Hockfield, S. Identification of proteins downregulated during the postnatal development of the cat visual cortex. Cereb. Cortex 4, 361–375 (1994).

    Article  CAS  Google Scholar 

  14. Kind, P. C., Kelly, G. M., Fryer, H. J. L., Blakemore, C. & Hockfield, S. Phospholipase C-β1 is present in the botrysome, an intermediate compartment-like organelle, and is regulated by visual experience in cat visual cortex. J. Neurosci. 17, 1471–1480 (1997).

    Article  CAS  Google Scholar 

  15. Hannan, A. J., Kind, P. C. & Blakemore, C. Phospholipase C-β1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex. Neuropharmacology 37, 593–605 (1998).

    Article  CAS  Google Scholar 

  16. De Camilli, P., Emr, S. D., McPherson, P. S. & Novick, P. Phosphoinositides as regulators in membrane traffic. Science 271, 1533–1539 (1996).

    Article  CAS  Google Scholar 

  17. Fabbri, M., Bannykh, S. & Balch W. E. Export of protein from the endoplasmic reticulum is regulated by a diacylglycerol/phorbol ester binding protein. J. Biol. Chem. 269, 26848–26857 (1994).

    CAS  PubMed  Google Scholar 

  18. Bevilacqua, J. A., Downes, C. P. & Lowenstein, P. R. Transiently selective activation of phosphoinositide turnover in layer V pyramidal neurons after specific mGluRs stimulation in rat somatosensory cortex during early postnatal development. J. Neurosci. 15, 7916–7928 (1995).

    Article  CAS  Google Scholar 

  19. Dudek, S. & Bear, M. F. A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246, 673–675 (1989).

    Article  CAS  Google Scholar 

  20. Reid, S. N. M., Romano, C., Hughes, T. & Daw, N. W. Immunohistochemical study of two phosphoinositide-linked metabotropic glutamate receptors (mGluR1a and mGluR5) in the cat visual cortex before, during and after the peak of the critical period for eye-specific connections. J. Comp. Neurol. 355, 470–477 (1995).

    Article  CAS  Google Scholar 

  21. Blue, M. E., Martin, L. J., Brennan, E. M. & Johnston, M. V. Ontogeny of non-NMDA glutamate receptors in rat barrel field cortex: I. Metabotropic receptors. J. Comp. Neurol. 386, 16–28 (1997).

    Article  CAS  Google Scholar 

  22. Munoz, A., Liu, X. B. & Jones, E. G. Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. J. Comp. Neurol. 409, 549–566 (1999).

    Article  CAS  Google Scholar 

  23. Kim, D. et al. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290–293 (1997).

    Article  CAS  Google Scholar 

  24. Lu, Y.-M. et al. Mice lacking mGluR5 show impaired learning and reduced CA1 LTP, but normal CA3 LTP. J. Neurosci. 17, 5196–5205 (1997).

    Article  CAS  Google Scholar 

  25. Jia, Z. et al. Selective abolition of the NMDA component of long term potentiation in mice lacking mGluR5. Learn. Mem. 5, 331–343 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huber, K. M. Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal homosynaptic long-term depression. Science 288, 1254–1257 (2000).

    Article  CAS  Google Scholar 

  27. Fitzjohn, S. M., Kingston, A. E., Lodge, D. & Collingridge, G. L. DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38, 1577–1583 (1999).

    Article  CAS  Google Scholar 

  28. Oliet, S. H., Malenka, R. C. & Nicoll R. A. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982 (1997).

    Article  CAS  Google Scholar 

  29. Kato, N. Dependence of long-term depression on metabotropic glutamate receptors in visual cortex. Proc. Natl. Acad. Sci. USA 90, 3650–3654 (1993).

    Article  CAS  Google Scholar 

  30. Zheng, F. & Gallagher, J. P. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron 9, 163–172 (1992).

    Article  CAS  Google Scholar 

  31. Bashir Z. I. et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350 (1993).

    Article  CAS  Google Scholar 

  32. Aiba, A. et al. Reduced hippocampal long-term potentiation and context-specific deficit in associative learning in mGluR1 mutant mice. Cell 79, 365–375 (1994).

    Article  CAS  Google Scholar 

  33. O'Connor, J. J., Rowan, M. J. & Anwyl, R. Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors. J. Neurosci. 15, 2013–2020 (1995).

    Article  CAS  Google Scholar 

  34. Lebrand, C. et al. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17, 823–835 (1996).

    Article  CAS  Google Scholar 

  35. Bear, M. F. & Singer, W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 320, 172–176 (1986).

    Article  CAS  Google Scholar 

  36. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000).

    Article  CAS  Google Scholar 

  37. Iwasato, T. et al. Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature 406, 726–731 (2000).

    Article  CAS  Google Scholar 

  38. Dixon, J. F., Los, G. V. & Hokin, L. E. Lithium stimulates glutamate “release” and inositol 1,4,5-trisphosphate accumulation via activation of the N-methyl-d-aspartate receptor in monkey and mouse cerebral cortex slices. Proc. Natl. Acad. Sci. USA 91, 8358–8362 (1994).

    Article  CAS  Google Scholar 

  39. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat. Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  40. Walikonis, R. S. et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069–4080 (2000).

    Article  CAS  Google Scholar 

  41. Glazewski, S., Giese, K. P., Silva, A. & Fox, K. The role of α-CamKII autophosphorylation in neocortical experience-dependent plasticity. Nat. Neurosci. 3, 911–918 (2000).

    Article  CAS  Google Scholar 

  42. Vitalis T. et al. Effects of monoamine oxidase A inhibition on barrel formation in the mouse somatosensory cortex: determination of a sensitive developmental period. J. Comp. Neurol. 393, 169–184 (1998).

    Article  CAS  Google Scholar 

  43. Welker, E. & Van der Loos, H. Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study of six strains of mice bred for different patterns of mystacial vibrissae. J. Neurosci. 6, 3355–3373 (1986).

    Article  CAS  Google Scholar 

  44. Schlagger, B. L., Fox, K. & O'Leary, D. D. M. Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364, 623–626 (1993).

    Article  Google Scholar 

  45. Fox, K., Schlagger, B. L., Glazewski, S. & O'Leary, D. D. M. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc. Natl. Acad. Sci. USA 93, 5584–5589 (1996).

    Article  CAS  Google Scholar 

  46. Chiaia, N. L., Fish, S. E., Bauer, W. R., Bennett-Clarke, C. A. & Rhoades, R. W. Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Brain Res. Dev. Brain Res. 66, 244–250 (1992).

    Article  CAS  Google Scholar 

  47. Henderson, T. A., Woolsey, T. A. & Jacquin, M. F. Infraorbital nerve blockade from birth does not disrupt central trigeminal pattern formation in the rat. Brain Res. Dev. Brain Res. 66, 146–152 (1992).

    Article  CAS  Google Scholar 

  48. Westermann, P., Knoblich, M., Maier, O., Lindschau, C. & Haller H. Protein Kinase C supports the formation of constitutive transport vesicles. Biochem. J. 320, 651–658 (1996).

    Article  CAS  Google Scholar 

  49. Sabatini, D. D., Adesnik, M., Ivanov, I. E. & Simon, J. P. Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission. Biocell 20, 287–300 (1996).

    CAS  PubMed  Google Scholar 

  50. Cases, O. et al. Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine A knock-outs. J. Neurosci. 18, 6914–6927 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (C.B.), the Wellcome Trust (P.K., C.B.) the Nuffield Medical Trust (A.H.), Oxford McDonnell-Pew Centre for Cognitive Neuroscience and a Creative Research Initiative Program from the Korean Government (H.S.). We thank T. Andrews, A. van Dellen, Z. Molnar, D. Moore and C. Hannan for discussions and comments on earlier versions of the manuscript, and M. O'Brien and P. Cordery for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Kind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannan, A., Blakemore, C., Katsnelson, A. et al. PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4, 282–288 (2001). https://doi.org/10.1038/85132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing