Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The spatial transformation of color in the primary visual cortex of the macaque monkey

An Erratum to this article was published on 01 February 2002

Abstract

Perceptually, color is used to discriminate objects by hue and to identify color boundaries. The primate retina and the lateral geniculate nucleus (LGN) have cell populations sensitive to color modulation, but the role of the primary visual cortex (V1) in color signal processing is uncertain. We re-evaluated color processing in V1 by studying single-neuron responses to luminance and to equiluminant color patterns equated for cone contrast. Many neurons respond robustly to both equiluminant color and luminance modulation (color-luminance cells). Also, there are neurons that prefer luminance (luminance cells), and a few neurons that prefer color (color cells). Surprisingly, most color-luminance cells are spatial-frequency tuned, with approximately equal selectivity for chromatic and achromatic patterns. Therefore, V1 retains the color sensitivity provided by the LGN, and adds spatial selectivity for color boundaries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial frequency responses for six V1 neurons to black/white luminance and red/green equiluminance.
Figure 2: Ratio of equiluminance response to luminance response (sensitivity ratio) in simple and complex cells across cortical layers.
Figure 3: Laminar distribution of neurons in each classification.
Figure 4: Spatial frequency response to luminance gratings, equiluminant gratings, L-cone, M-cone and S-cone-isolating gratings for a simple cell in layer 4Cα.
Figure 5: Spatial properties of all simple and complex cells that respond to both luminance gratings and equiluminant gratings (n = 48).
Figure 6: Spatial frequency bandwidths of all simple and complex color-luminance cells for luminance gratings and cone-isolating gratings.
Figure 7: Histograms of the L- and M-cone phase differences from the L- and M-cone isolating frequency responses for all simple cells in the population.
Figure 8: Responses of a LGN parvocellular neuron and a V1 simple color-luminance cell to equiluminant red/green gratings of different spatial frequencies.

References

  1. Zeki, S. A Vision of the Brain (Blackwell Science, Oxford, 1993).

    Google Scholar 

  2. Wallach, H. Ueber visuell wahrgenommene Bewegungsrichtung. Psych. Forsch. 20, 325–380 (1935). Translated into English in Wüerger, S., Shapley, R. & Rubin, N. On the visually perceived direction of motion. Perception 25, 1317–1368 (1996).

    Article  Google Scholar 

  3. Lennie, P. in Color Vision: From Genes to Perception (eds. Gegenfurtner, K. R. & Sharpe, L. T.) 235–247 (Cambridge Univ. Press, Cambridge, UK, 1999).

    Google Scholar 

  4. Livingstone, M. & Hubel, D. H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).

    Article  CAS  Google Scholar 

  5. Thorell, L. G., De Valois, R. L. & Albrecht, D. G. Spatial mapping of monkey V1 cells with pure color and luminance stimuli. Vision Res. 24, 751–769 (1984).

    Article  CAS  Google Scholar 

  6. Ts'o, D. Y. & Gilbert, C. D. The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727 (1988).

    Article  CAS  Google Scholar 

  7. Lennie, P., Krauskopf, J. & Sclar, G. Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669 (1990).

    Article  CAS  Google Scholar 

  8. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

    Article  CAS  Google Scholar 

  9. Dow, B. M. Functional classes of cells and their laminar distribution in monkey visual cortex. J. Neurophysiol. 37, 927–946 (1974).

    Article  CAS  Google Scholar 

  10. Engel, S. A., Zhang, X. & Wandell, B. A. Color tuning in human visual cortex measured using functional magnetic resonance imaging. Nature 388, 68–71 (1997).

    Article  CAS  Google Scholar 

  11. van der Horst, G. J. C. & Bouman, M. A. Spatiotemporal chromaticity discrimination. J. Opt. Soc. Am. 59, 1482–1488 (1969).

    Article  CAS  Google Scholar 

  12. Mullen, K. T. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol. (Lond.) 359, 381–400 (1985).

    Article  CAS  Google Scholar 

  13. De Valois, R. L. & De Valois, K. K. Spatial Vision (eds. Broadbent, D. E. et al.) 218 (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  14. Kaplan, E., Shapley, R. M. & Purpura, K. Color and luminance contrast as tools for probing the primate retina. Neurosci. Res. Suppl. 8, S151–S165 (1988).

    Article  CAS  Google Scholar 

  15. Bradley, A., Switkes, E. & De Valois, K. Orientation and spatial frequency selectivity of adaptation to color and luminance gratings. Vision Res. 28, 841–856 (1988).

    Article  CAS  Google Scholar 

  16. Krauskopf, J. Effect of retinal image stabilization on the appearance of heterochromatic targets. J. Opt. Soc. Am. 53, 741–744 (1963).

    Article  CAS  Google Scholar 

  17. Yarbus, A. L. Eye Movements and Vision (Plenum, New York, 1967).

    Book  Google Scholar 

  18. Callaway, E. M. Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21, 47–74 (1998).

    Article  CAS  Google Scholar 

  19. Hawken, M. J., Parker, A. J. & Lund, J. S. Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J. Neurosci. 8, 3541–3548 (1988).

    Article  CAS  Google Scholar 

  20. Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y. & Ault, S. J. Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818 (1995).

    Article  CAS  Google Scholar 

  21. Cole, G. R., Stromeyer, C. F. I. & Kronauer, R. E. Visual interactions with luminance and chromatic stimuli. J. Opt. Soc. Am. A 7, 128–140 (1990).

    Article  CAS  Google Scholar 

  22. De Valois, K. K. & Switkes, E. Simultaneous masking interactions between chromatic and luminance gratings. J. Opt. Soc. Am. 73, 11–18 (1983).

    Article  CAS  Google Scholar 

  23. Switkes, E., Bradley, A. & De Valois, K. K. Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. J. Opt. Soc. Am. A 5, 1149–1162 (1988).

    Article  CAS  Google Scholar 

  24. Shevell, S. K. & Wei, J. Chromatic induction: border contrast or adaptation to surrounding light. Vision Res. 38, 1561–1566 (1998).

    Article  CAS  Google Scholar 

  25. Krauskopf, J., Williams, D. R., Mandler, M. B. & Brown, A. Higher order color mechanisms. Vision Res. 26, 23–32 (1986).

    Article  CAS  Google Scholar 

  26. Jameson, D. & Hurvich, L. M. Perceived color and its dependence on focal, surrounding, and preceding stimulus variables. J. Opt. Soc. Am. 49, 890–898 (1959).

    Article  CAS  Google Scholar 

  27. Reid, R. C. & Shapley, R. M. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716–718 (1992).

    Article  CAS  Google Scholar 

  28. Michael, C. R. Color vision mechanisms in monkey striate cortex: dual-opponent cells with concentric receptive fields. J. Neurophysiol. 41, 572–588 (1978).

    Article  CAS  Google Scholar 

  29. Gouras, P. Opponent-color cells in different layers of foveal striate cortex. J. Physiol. (Lond.) 238, 583–602 (1974).

    Article  CAS  Google Scholar 

  30. Van Essen, D. C., Newsome, W. T., Maunsell, J. H. & Bixby, J. L. The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J. Comp. Neurol. 244, 451–480 (1986).

    Article  CAS  Google Scholar 

  31. DeYoe, E. A. & Van Essen, D. C. Concurrent processing streams in monkey visual cortex. Trends Neurosci. 11, 219–226 (1988).

    Article  CAS  Google Scholar 

  32. Levitt, J. B., Lund, J. S. & Yoshioka, T. Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey. Behav. Brain Res. 76, 5–19 (1996).

    Article  CAS  Google Scholar 

  33. Boyd, J. D. & Casagrande, V. A. Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT). J. Comp. Neurol. 409, 573–591 (1999).

    Article  CAS  Google Scholar 

  34. Kiper, D. C., Fenstemaker, S. B. & Gegenfurtner, K. R. Chromatic properties of neurons in macaque area V2. Vis. Neurosci. 14, 1061–1072 (1997).

    Article  CAS  Google Scholar 

  35. Gegenfurtner, K.R., Kiper, D. C. & Levitt, J. B. Functional properties of neurons in macaque area V3. J. Neurophysiol. 77, 1906–1923 (1997).

    Article  CAS  Google Scholar 

  36. Sceniak, M.P., Ringach, D. L., Hawken, M. J. & Shapley, R. Contrast's effect on spatial summation by macaque V1 neurons. Nat. Neurosci. 2, 733–739 (1999).

    Article  CAS  Google Scholar 

  37. Estevez, O. & Spekreijse, H. The “silent substitution” method in visual research. Vision Res. 22, 681–691 (1982).

    Article  CAS  Google Scholar 

  38. Stockman, A. & Sharpe, L. T. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Res. 40, 1711–1737 (2000).

    Article  CAS  Google Scholar 

  39. Skottun, B.C. et al. Classifying simple and complex cells on the basis of response modulation. Vision Res. 31, 1079–1086 (1991).

    CAS  PubMed  Google Scholar 

  40. Shapley, R.M. & Hawken, M. J. in Color Vision: From Genes to Perception (eds. Gegenfurtner, K. R. & Sharpe, L. T.) 221–234 (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  41. Mardia, K.V. Statistics of Directional Data (Academic, London, 1972).

    Google Scholar 

  42. Batschelet, E. Circular Statistics in Biology (Academic, London, 1981).

    Google Scholar 

  43. Levick, W.R. & Thibos, L. N. Analysis of orientation bias in cat retina. J. Physiol. (Lond.) 329, 243–261 (1982).

    Article  CAS  Google Scholar 

  44. Lund, J.S., Hendrickson, A. E., Ogren, M. P. & Tobin, E. A. Anatomical organization of primate visual cortex area V1. J. Comp. Neurol. 202, 19–45 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Ringach, M. Sceniak, I. Mareschal, J.A. Henrie and F. Mechler for helping with the physiology experiments. L. Smith helped in the histological reconstruction and during physiology experiments. We also thank R.C. Reid for comments on the manuscript. This work was supported by National Institutes of Health grant EY01472 and EY8300, National Institute of Mental Health predoctoral grant MH12430-01 and Core Grant for Vision Research P30-EY13079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth N. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E., Hawken, M. & Shapley, R. The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4, 409–416 (2001). https://doi.org/10.1038/86061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing