Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux

Abstract

Tyrosine phosphorylation can upregulate NMDA receptor activity during pathological and physiological alterations of synaptic strength. Here we describe downregulation of recombinant NR1/2A receptors by tyrosine dephosphorylation that requires agonist binding, but is independent of ion flux. The tyrosine residues involved in this new form of NMDA receptor modulation likely form a 'ring' adjacent to the last transmembrane domain. The downregulation was due to a reduction in the number of functional channels, and was blocked by co-expressing a dominant-negative μ2-subunit of the clathrin-adaptor protein AP-2. Our results provide a mechanism by which synaptic NMDA receptors can be modulated in a use-dependent manner even when the postsynaptic membrane is not sufficiently depolarized to relieve channel block by magnesium ions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The progressive decline of peak NMDA currents is due to tyrosine dephosphorylation.
Figure 2: The decline of peak current is use dependent, but calcium insensitive.
Figure 3: The decline of peak current amplitude is independent of ion influx.
Figure 4: The first 37 residues immediately distal to M4 in NR2A are essential for the decline in peak current.
Figure 5: A ring of intracellular tyrosines stabilizes NR1/2A responses.
Figure 6: The first 37 residues of NR2A may interact with another protein.
Figure 7: Co-expression of a dominant-negative μ2 subunit indicates that the decline in peak current amplitude is due to an interaction with the adaptor protein AP-2.

Similar content being viewed by others

References

  1. Wang, Y., Small, D. L., Stanimirovic, D. B., Morley, P. & Durkin, J. P. AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389, 502–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi, T., Umemori, H., Mishina, M. & Yamamoto, T. The AMPA receptor interacts with and signals through the protein tyrosine kinase Lyn. Nature 397, 72–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Moreno, A. & Lerma, J. Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20, 1211–1218 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Swope, S. L., Moss, S. I., Raymond, L. A. & Huganir, R. L. Regulation of ligand-gated ion channels by protein phosphorylation. Adv. Second Messenger Phosphoprotein Res. 33, 49–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  6. Wang, Y. T., Yu, X. M. & Salter, M. W. Ca2+-independent reduction of N-methyl-D-aspartate channel activity by protein tyrosine phosphatase. Proc. Natl. Acad. Sci. USA 93, 1721–1725 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y. T. & Salter, M. W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, C. & Leonard, J. P. Protein tyrosine kinase-mediated potentiation of currents from cloned NMDA receptors. J. Neurochem. 67, 194–200 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Köhr, G. & Seeburg, P. H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the src family. J. Physiol. (Lond.) 492, 445–452 (1996).

    Article  Google Scholar 

  10. Zheng, F., Gingrich, M. B., Traynelis S. F. & Conn, P. J. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1, 185–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Yu, X. M., Askalan, R., Keil II, G. J. & Salter, M. W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, W.-Y. et al. G-protein coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. 2, 331–338 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Xiong, Z.-G. et al. Src potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition. J. Neurosci. 19, RC37, 1–6 (1999).

    Article  Google Scholar 

  14. O'Dell, T. J., Kandel, E. R. & Grant, S. G. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–560 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Colledge, M. & Froehner, S. C. Signals mediating ion channel clustering at the neuromuscular junction. Curr. Opin. Neurobiol. 8, 357–363 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Rosenmund, C. & Westbrook, G. L. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10, 805–814 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Ehlers, M. D., Zhang, S., Bernhardt, J. P. & Huganir, R. L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84, 745–755 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Krupp, J. J., Vissel, B., Heinemann, S. F. & Westbrook, G. L. N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20, 317–327 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Krupp, J. J., Vissel, B., Thomas, C. G., Heinemann, S. F. & Westbrook, G. L. Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19, 1165–1174 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tong, G. & Jahr, C. E. Regulation of glycine-insensitive desensitization of the NMDA receptor in outside-out patches. J. Neurophysiol. 72, 754–761 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J., Zhou, Y., Wen, H. & Levitan, I. B. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J. Neurosci. 19, RC4, 1–7 (1999).

    Article  Google Scholar 

  23. Swope, S. L. & Huganir, R. L. Binding of the nicotinic acetylcholine receptor to SH2 domains of Fyn and Fyk protein tyrosine kinases. J. Biol. Chem. 269, 29817–29824 (1994).

    CAS  PubMed  Google Scholar 

  24. Holmes, T. C., Fadool, D. A., Ren, R. & Levitan, I. B. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain. Science 274, 2089–2091 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Stern, P., Cik, M., Colquhoun, D. & Stephenson, F. A. Single channel properties of cloned NMDA receptors in a human cell line: comparison with results from Xenopus oocytes. J. Physiol. (Lond.) 476, 391–397 (1994).

    Article  CAS  Google Scholar 

  26. Rosenmund, C., Feltz, A. & Westbrook, G. L. Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marsh, M. & McMahon, H. T. The structural era of endocytosis. Science 285, 215–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant μ2 subunit and its effect on endocytosis. EMBO J. 18, 2489–2499 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Legendre, P., Rosenmund, C. & Westbrook, G. L. Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J. Neurosci. 13, 674–684 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu, X. - M. & Salter, M. W. Gain control of NMDA-receptor currents by intracellular sodium. Nature 396, 469–474 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Tezuka, T., Umemori, H., Akiyama, T., Nakanishi, S. & Yamamoto, T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA 96, 435–440 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin, S.-Y. et al. Brain-derived neurotrophic factor enhances association of protein tyrosine phosphatase PTP1D with the NMDA receptor subunit NR2B in the cortical postsynaptic density. Mol. Brain Res. 70, 18–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Fadool, D. A. & Levitan, I. B. Modulation of olfactory bulb potassium current by tyrosine phosphorylation. J. Neurosci. 18, 6126–6137 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moon, I. S., Apperson, M. L. & Kennedy, M. B. The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc. Natl. Acad. Sci. USA 91, 3954–3958 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau, L.-F. & Huganir, R. L. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 270, 20036–20041 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Dunak, A. W., Yasuda, R. P. & Wolfe, B. B. Developmental regulation of tyrosine phosphorylation of the NR2D NMDA glutamate receptor subunit in rat central nervous system. J. Neurochem. 71, 1926–1934 (1998).

    Google Scholar 

  37. Zhou, S. & Cantley, L. C. Recognition and specificity in protein tyrosine kinase-mediated signalling. Trends Biochem. Sci. 20, 470–475 (1995).

    Article  Google Scholar 

  38. Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Man, H.-Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, S. M., Howell, K. E., Henley, J. R., Cao, H. & McNiven, M. A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat. Cell Biol. 2, 125–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Craven, S. E. & Bredt, D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by a tyrosine-based trafficking signal. J. Biol. Chem. 275, 20045–20051 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Gurd, J. W. & Bissoon, N. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma. J. Neurochem. 69, 623–630 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Takagi, N. et al. The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J. Cereb. Blood Flow Metab. 19, 880–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Osten, P. et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27, 313–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  PubMed  Google Scholar 

  47. Hollmann, M. et al. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10, 943–954 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Ishii, T. et al. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843 (1993).

    CAS  PubMed  Google Scholar 

  49. Horten, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    Article  Google Scholar 

  50. Kobayashi, S. et al. Activation of pp60c-src depending on cell density in PC12 cells. J. Biol. Chem. 272, 16262–16267 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants MH46613 (G.L.W.), NS28709 (S.F.H.), the McKnight Foundation (S.F.H.), the John Adler Foundation (S.F.H.), fellowships from the Human Frontiers program (J.J.K. and B.V.), a Bundy Foundation award (B.V.) and a CJ Martin NHMRC of Australia award (B.V.). We thank C. Schulteis and K. Prasad for preliminary experiments, C. Thomas and L. Grimes for preparation of neuronal cultures, and G. Royle for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes J. Krupp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vissel, B., Krupp, J., Heinemann, S. et al. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat Neurosci 4, 587–596 (2001). https://doi.org/10.1038/88404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing