Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Role of the posterior parietal cortex in updating reaching movements to a visual target

Abstract

The exact role of posterior parietal cortex (PPC) in visually directed reaching is unknown. We propose that, by building an internal representation of instantaneous hand location, PPC computes a dynamic motor error used by motor centers to correct the ongoing trajectory. With unseen right hands, five subjects pointed to visual targets that either remained stationary or moved during saccadic eye movements. Transcranial magnetic stimulation (TMS) was applied over the left PPC during target presentation. Stimulation disrupted path corrections that normally occur in response to target jumps, but had no effect on those directed at stationary targets. Furthermore, left-hand movement corrections were not blocked, ruling out visual or oculomotor effects of stimulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean hand paths produced by all subjects (SA–SE) with the right, dominant hand in the non-stimulated (upper row) and stimulated (lower row) conditions.
Figure 2: Influence of the TMS pulse on movement accuracy for the four subjects who showed a total or near-total disruption of trajectory corrections in the stimulated condition.
Figure 3: Mean hand paths produced by all the subjects (SA–SE) using the left, non-dominant hand without (non-stimulated, upper row) or with (stimulated, lower row) TMS.
Figure 4: TMS location sites determined by three-dimensional MRI for all subjects.

References

  1. Keele, S. W. in Handbook of Physiology, Section 1: The Nervous System. Vol 2: Motor Control (ed. Brooks, W. B.) 1391–1414 (Williams and Wilkins, Baltimore, 1981).

    Google Scholar 

  2. Desmurget, M., Pelisson, D., Rossetti, Y. & Prablanc, C. From eye to hand: planning goal-directed movements. Neurosci. Biobehav. Rev. 22, 761–788 ( 1998).

    Article  CAS  Google Scholar 

  3. Jeannerod, M. The Neural and Behavioural Organization of Goal-Directed Movements. Motor Control: Concepts and Issues (Wiley, New York, 1988 ).

    Google Scholar 

  4. Hollerbach, J. M. Computers, brains and the control of movement. Trends Neurosci. 5, 189–192 ( 1982).

    Article  Google Scholar 

  5. Arbib, M. A. in Handbook of Physiology, Section I: The Nervous System, Vol. 2: Motor Control (ed. Brooks, W. B.) 1449–1480 (Williams and Wilkins, Baltimore, 1981).

    Google Scholar 

  6. Goodale, M. A., Pélisson, D. & Prablanc, C. Large adjustments in visually guided reaching do not depend on vision of the hand and perception of target displacement. Nature 320, 748–750 ( 1986).

    Article  CAS  Google Scholar 

  7. Prablanc, C. & Martin, O. Automatic control during hand reaching at undetected two-dimensional target displacements. J. Neurophysiol. 67, 455–469 ( 1992).

    Article  CAS  Google Scholar 

  8. Hoff, B. & Arbib, M. A. A model of the effects of speed, accuracy, and perturbation on visually guided reaching. Exp. Brain Res. 22, 285–306 ( 1992).

    Google Scholar 

  9. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 ( 1995).

    Article  CAS  Google Scholar 

  10. Wolpert, D. M., Goodbody, S. & Husain, M. Maintaining internal representations: the role of the human superior parietal lobe. Nat. Neurosci. 1, 529–533 (1998).

    Article  CAS  Google Scholar 

  11. Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    Article  CAS  Google Scholar 

  12. Clower, D. M. et al. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383, 618 –621 (1996).

    Article  CAS  Google Scholar 

  13. McKay, W. A. Properties of reach-related neuronal activity in cortical area 7A. J. Neurophysiol. 67, 1335–1345 (1992).

    Article  Google Scholar 

  14. Prablanc, C., Echallier, J. F., Komilis, E. & Jeannerod, M. Optimal response of eye and hand motor system in pointing at visual target. I. Spatio-temporal characteristics of of eye and hand movements and their relationships when varying the amount of visual information. Biol. Cybern. 35, 113–124 ( 1979).

    Article  CAS  Google Scholar 

  15. Prablanc, C., Pélisson, D. & Goodale, M. A. Visual control of reaching movements without vision of the limb. I. Role of extraretinal feedback of target position in guiding the hand. Exp. Brain Res. 62, 293– 302 (1986).

    Article  CAS  Google Scholar 

  16. Matin, E. Saccadic suppression: a review and an analysis. Psychol. Rev. 81, 899–917 (1974).

    CAS  Google Scholar 

  17. Epstein, C. M. & Zangaladze, A. Magnetic coil suppression of extrafoveal visual perception using disappearance targets. J. Clin. Neurophysiol. 13, 242– 246 (1996).

    Article  CAS  Google Scholar 

  18. Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  Google Scholar 

  19. Adams, J. A. A closed-loop theory of motor learning. J. Mot. Behav. 3, 111–150 (1971).

    Article  CAS  Google Scholar 

  20. Desmurget, M., Rossetti, Y., Prablanc, C., Stelmach, G. E. & Jeannerod, M. Representation of hand position prior to movement and motor variability. Can. J. Physiol. Pharmacol. 73, 262–272 ( 1995).

    Article  CAS  Google Scholar 

  21. Vindras, P., Desmurget, M., Prablanc, C. & Viviani, P. Pointing errors reflect biases in the perception of the initial hand position. J. Neurophysiol. 79, 3290– 3294 (1998).

    Article  CAS  Google Scholar 

  22. Oyachi, H. & Ohtsuka, K. Transcranial magnetic stimulation of the posterior parietal cortex degrades accuracy of memory-guided saccades in humans. Invest. Ophthalmol. Vis. Sci. 36, 1441–1449 (1995).

    CAS  PubMed  Google Scholar 

  23. Muri, R. M., Vermersch, A. I., Rivaud, S., Gaymard, B. & Pierrot-Deseilligny, C. Effects of single-pulse transcranial magnetic stimulation over the prefrontal and posterior parietal cortices during memory-guided saccades in humans. J. Neurophysiol. 76, 2102–2106 ( 1996).

    Article  CAS  Google Scholar 

  24. Grafton, S. T., Mazziotta, J. C., Woods, R. P. & Phelps, M. E. Human functional anatomy of visually guided finger movements. Brain 115, 565–587 ( 1992).

    Article  Google Scholar 

  25. Faugier-Grimaud, S., Frenois, C. & Peronnet, F. Effects of posterior parietal lesions on visually guided movements in monkeys. Exp. Brain Res. 59, 125–138 (1985).

    Article  CAS  Google Scholar 

  26. Kertzman, C., Schwarz, U., Zeffiro, T. A. & Hallett, M. The role of posterior parietal cortex in visually guided reaching movements in humans. Exp. Brain Res. 114, 170– 183 (1997).

    Article  CAS  Google Scholar 

  27. Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., Muri, R. & Vermersch, A. I. Cortical control of saccades. Ann. Neurol. 37, 557–567 ( 1995).

    Article  CAS  Google Scholar 

  28. Perenin, M. T. & Vighetto, A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111, 643–674 (1988).

    Article  Google Scholar 

  29. Rushworth, M. F., Johansen-Berg, H. & Young, S. A. Parietal cortex and spatial-postural transformation during arm movements. J. Neurophysiol. 79, 478–482 (1998).

    Article  CAS  Google Scholar 

  30. Seal, J., Gross, C. & Bioulac, B. Activity of neurons in area 5 during a simple arm movement in monkeys before and after deafferentation of the trained limb. Brain Res. 250, 229–243 (1982).

    Article  CAS  Google Scholar 

  31. Johnson, P. B., Ferraina, S., Bianchi, L. & Caminiti, R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119 (1996).

    Article  CAS  Google Scholar 

  32. Wise, S. P., Boussaoud, D., Johnson, P. B. & Caminiti, R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci. 20, 25 –42 (1997).

    Article  CAS  Google Scholar 

  33. Auerbach, S. H. & Alexander, M. P. Pure agraphia and unilateral optic ataxia associated with a left superior parietal lobule lesion. J. Neurol. Neurosurg. Psychiatry 44, 430–432 (1981).

    Article  CAS  Google Scholar 

  34. Hinton, G. Parallel computations for controlling an arm. J. Mot. Behav. 16, 171–194 (1984).

    Article  CAS  Google Scholar 

  35. Wang, X. G. & Verriest, J. P. A geometric algorithm to predict the arm posture for computer-aided ergonomic evaluation. J. Visualization Comput. Animation 9, 33–47 (1998).

    Article  CAS  Google Scholar 

  36. Desmurget, M., Jordan, M., Prablanc, C. & Jeannerod, M. Constrained and unconstrained movements involve different control strategies. J. Neurophysiol. 77, 1644–1650 (1997).

    Article  CAS  Google Scholar 

  37. Epstein, C. M. et al. Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 47 , 1590–1593 (1996).

    Article  CAS  Google Scholar 

  38. Grafton, S. T., Woods, R. P. & Mazziotta, J. C. Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp. Brain Res. 95, 172–176 (1993).

    Article  CAS  Google Scholar 

  39. Desmurget, M., Prablanc, C., Jordan, M. I. & Jeannerod, M. Are reaching movements planned to be straight and invariant in the extrinsic space: kinematic comparison between compliant and unconstrained motions. Q. J. Exp. Psychol. (in press).

Download references

Acknowledgements

Supported by Public Health Service grant NS33504 and a Markey Training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Grafton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmurget, M., Epstein, C., Turner, R. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2, 563–567 (1999). https://doi.org/10.1038/9219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing