Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation

Abstract

Corticotropin-releasing factor (CRF) has a key role in the central stress response, and altered levels of this neuropeptide are linked to stress-related psychopathologies such as anxiety and depression. These disorders are associated with the inability to properly regulate stress response, specifically following exposure to prolonged stressful stimuli. Therefore, the current study assessed the effects of prolonged and site-specific over-expression of CRF, which mimics the state of chronic production, in extended amygdala nuclei that are known to be involved in mediating anxiety-like states. We first constructed and generated lentiviruses that overexpress (OE) CRF in a robust and stable manner, and then generated two male mouse models continuously over-expressing CRF, either at the central nucleus of the amygdala (CeA), or at the dorsolateral subdivision of the bed nucleus of the stria terminalis (BNSTdl). After 4 months, behavioral assessments were conducted for anxiety and depressive indices on these mice. Surprisingly, prolonged CRF OE at the CeA attenuated stress-induced anxiety-like behaviors, whereas prolonged CRF OE in the BNSTdl increased depressive-like behaviors, without affecting anxiety levels. These results show possible differential roles for CRF expressed by distinct loci of the extended amygdala, in mediating stress-induced emotional behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  2. Rivier C, Vale W . Modulation of stress-induced ACTH release by corticotropin releasing factor, catecholamines and vasopressin. Nature 1983; 305: 325–327.

    Article  CAS  PubMed  Google Scholar 

  3. Muglia L, Jacobson L, Dikkes P, Majzoub JA . Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995; 373: 427–432.

    Article  CAS  PubMed  Google Scholar 

  4. Sutton RE, Koob GF, LeMoal M, Rivier J, Vale WW . Corticotropin-releasing factor (CRF) produces behavioral activation in rats. Nature 1982; 297: 331–333.

    Article  CAS  PubMed  Google Scholar 

  5. Brown MR, Fisher LA, Spiess J, Rivier C, Rivier J, Vale W . Corticotropin-releasing factor (CRF): actions on the sympathetic nervous system and metabolism. Endocrinology 1982; 111: 928–931.

    Article  CAS  PubMed  Google Scholar 

  6. Koob GF, Heinrichs SC . A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999; 848: 141–152.

    Article  CAS  PubMed  Google Scholar 

  7. Joëls M, Baram TZ . The neuro-symphony of stress. Nat Rev Neurosci 2009; 10: 459–466.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Holsboer F . The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999; 33: 181–214.

    Article  CAS  PubMed  Google Scholar 

  9. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB . The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999; 160: 1–12.

    Article  CAS  PubMed  Google Scholar 

  10. Nemeroff CB . The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry 1988; 21: 76–82.

    Article  CAS  PubMed  Google Scholar 

  11. Nemeroff CB . New vistas in neuropeptide research in neuropsychiatry: focus on corticotropin-releasing factor. Neuropsychopharmacology 1992; 6: 69–75.

    CAS  PubMed  Google Scholar 

  12. Reul JM, Holsboer F . Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002; 2: 23–33.

    Article  CAS  PubMed  Google Scholar 

  13. De Kloet ER, Joels M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  PubMed  Google Scholar 

  14. McEwen BS . Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 2005; 54: 20–23.

    Article  CAS  PubMed  Google Scholar 

  15. Lopez JF, Akil H, Watson SJ . Neural circuits mediating stress. Biol Psychiatry 1999; 46: 1461–1471.

    Article  CAS  PubMed  Google Scholar 

  16. Zorrilla EP, Koob GF . The therapeutic potential of CRF1 antagonists for anxiety. Expert Opin Investig Drugs 2004; 137: 799–828.

    Article  Google Scholar 

  17. Heinrichs SC, Koob GF . Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 2004; 311: 427–440.

    Article  CAS  PubMed  Google Scholar 

  18. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G . Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003; 24: 580–588.

    Article  CAS  PubMed  Google Scholar 

  19. Bale TL . Sensitivity to stress: dysregulation of CRF pathways and disease development. Horm Behav 2005; 48: 1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Chrousos GP, Gold PW . The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992; 267: 1244–1252.

    Article  CAS  PubMed  Google Scholar 

  21. Griebel G, Perrault G, Sanger DJ . Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents. Comparison with diazepam and buspirone. Psychopharmacology 1998; 138: 55–66.

    Article  CAS  PubMed  Google Scholar 

  22. Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P et al. 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 2002; 301: 333–345.

    Article  CAS  PubMed  Google Scholar 

  23. Arborelius L . Chronic administration of the selective corticotropin-releasing factor 1 receptor antagonist CP-154,526: behavioral, endocrine and neurochemical effects in the rat. J Pharmacol Exp Ther 2000; 294: 588–597.

    CAS  PubMed  Google Scholar 

  24. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 1998; 19: 162–166.

    Article  CAS  PubMed  Google Scholar 

  25. Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT . Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 1997; 71: 15–21.

    Article  CAS  PubMed  Google Scholar 

  26. Müller MB, Zimmermann S, Sillaber I, Hagemeyer TP, Deussing JM, Timpl P et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 2003; 6: 1100–1107.

    Article  PubMed  Google Scholar 

  27. Alheid GF . Extended amygdala and basal forebrain. Ann N Y Acad Sci 2003; 985: 185–205.

    Article  CAS  PubMed  Google Scholar 

  28. Lee Y, Davis M . Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 1997; 17: 6434–6446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walker DL, Davis M . Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J Neurosci 1997; 17: 9375–9383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davis M . Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 1998; 44: 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  31. Naldini L, Blömer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of non dividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  33. Korosi A, Veening JG, Kozicz T, Henckens M, Dederen J, Groenink L et al. Distribution and expression of CRF receptor 1 and 2 mRNAs in the CRF over-expressing mouse brain. Brain Res 2006; 1072: 46–54.

    Article  CAS  PubMed  Google Scholar 

  34. Bilkei-Gorzo A, Racz I, Michel K, Darvas M, Maldonado R, Zimmer A . A common genetic predisposition to stress sensitivity and stress-induced nicotine craving. Biol Psychiatry 2008; 63: 164–171.

    Article  CAS  PubMed  Google Scholar 

  35. Groenink L, Dirks A, Verdouw PM, de Graaff M, Peeters BW, Millan MJ et al. CRF1 not glucocorticoid receptors mediate prepulse inhibition deficits in mice overexpressing CRF. Biol Psychiatry 2008; 63: 360–368.

    Article  CAS  PubMed  Google Scholar 

  36. Chen A, Zorrilla E, Smith S, Rousso D, Levy C, Vaughan J . Urocortin 2-deficient mice exhibit gender-specific alterations in circadian hypothalamus-pituitary-adrenal axis and depressive-like behavior. J Neurosci 2006; 26: 5500–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Viau V, Sawchenko PE . Hypophysiotropic neurons of the paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs repeated restraint stress. J Comp Neurol 2002; 445: 293–307.

    Article  PubMed  Google Scholar 

  38. Campeau S, Davis M . Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 1995; 15: 2301–2311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campeau S, Davis M . Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci 1995; 15: 2312–2327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hitchcock J, Davis M . Lesions of the amygdala, but not of the cerebellum or bed nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci 1986; 100: 11–22.

    Article  CAS  PubMed  Google Scholar 

  41. Hitchcock JM, Davis M . Fear-potentiated startle using an auditory conditioned stimulus: effect of lesions of the amygdala. Physiol Behav 1987; 39: 403–408.

    Article  CAS  PubMed  Google Scholar 

  42. Kim M, Campeau S, Falls WA, Davis M . Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behav Neural Biol 1993; 59: 5–8.

    Article  CAS  PubMed  Google Scholar 

  43. Albeck DS, McKittrick CR, Blanchard DC, Blanchard RJ, Nikulina J, McEwen BS et al. Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain. J Neurosci 1997; 17: 4895–4903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stout SC, Mortas P, Owens MJ, Nemeroff CB, Moreau J . Increased corticotropin-releasing factor concentrations in the bed nucleus of the stria terminalis of anhedonic rats. Eur J Pharmacol 2000; 401: 39–46.

    Article  CAS  PubMed  Google Scholar 

  45. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM . Neurobiology of depression. Neuron 2002; 34: 13–25.

    Article  CAS  PubMed  Google Scholar 

  46. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W . Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992; 130: 3378–3386.

    Article  CAS  PubMed  Google Scholar 

  47. Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW . Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 1994; 14: 2579–2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Groenink L, Dirks A, Verdouw PM, Schipholt M, Veening JG, van der Gugten J et al. HPA axis dysregulation in mice overexpressing corticotropin releasing hormone. Biol Psychiatry 2002; 51: 875–881.

    Article  CAS  PubMed  Google Scholar 

  49. Dirks A, Groenink L, Bouwknecht JA, Hijzen TH, Van Der Gugten J, Ronken E et al. Overexpression of corticotropin-releasing hormone in transgenic mice and chronic stress-like autonomic and physiological alterations. Eur J Neurosci 2002; 16: 1751–1760.

    Article  PubMed  Google Scholar 

  50. Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry 2008; 13: 1028–1042.

    CAS  PubMed  Google Scholar 

  51. Sajdyk TJ, Schober DA, Gehlert DR, Shekhar A . Role of corticotropin-releasing factor and urocortin within the basolateral amygdala of rats in anxiety and panic responses. Behav Brain Res 1999; 100: 207–215.

    Article  CAS  PubMed  Google Scholar 

  52. Iredale PA, Terwilliger R, Widnell KL, Nestler EJ, Duman RS . Differential regulation of corticotropin-releasing factor1 receptor expression by stress and agonist treatments in brain and cultured cells. Mol Pharmacol 1996; 50: 1103–1110.

    CAS  PubMed  Google Scholar 

  53. Brunson KL, Grigoriadis DE, Lorang MT, Baram TZ . Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp Neurol 2002; 176: 75–86.

    Article  CAS  PubMed  Google Scholar 

  54. Rasmussen TN, Novak I, Nielsen SM . Internalization of the human CRF receptor 1 is independent of classical phosphorylation sites and of beta-arrestin 1 recruitment. Eur J Biochem 2004; 271: 4366–4374.

    Article  CAS  PubMed  Google Scholar 

  55. Oakley RH, Olivares-Reyes JA, Hudson CC, Flores-Vega F, Dautzenberg FM, Hauger RL . Carboxyl-terminal and intracellular loop sites for CRF1 receptor phosphorylation and beta-arrestin-2 recruitment: a mechanism regulating stress and anxiety responses. Am J Physiol Regul Integr Comp Physiol 2007; 293: R209–R222.

    Article  CAS  PubMed  Google Scholar 

  56. Perry SJ, Junger S, Kohout TA, Hoare SR, Struthers RS, Grigoriadis DE et al. Distinct conformations of the corticotropin releasing factor type 1 receptor adopted following agonist and antagonist binding are differentially regulated. J Biol Chem 2005; 280: 11560–11568.

    Article  CAS  PubMed  Google Scholar 

  57. Herringa RJ, Nanda SA, Hsu DT, Roseboom PH, Kalin NH . The effects of acute stress on the regulation of central and basolateral amygdala CRF-binding protein gene expression. Brain Res 2004; 131: 17–25.

    CAS  Google Scholar 

  58. Herringa RJ, Mackenrodt DB, Barlow JD, Roseboom PH, Nanda SA, Kalin NH . Corticotropin-releasing factor (CRF), but not corticosterone, increases basolateral amygdala CRF-binding protein. Brain Res 2006; 1083: 21–28.

    Article  CAS  PubMed  Google Scholar 

  59. Keen-Rhinehart E, Michopoulos V, Toufexis DJ, Martin EI, Nair H, Ressler KJ et al. Continuous expression of corticotropin-releasing factor in the central nucleus of the amygdala emulates the dysregulation of the stress and reproductive axes. Mol Psychiatry 2009; 14: 37–50.

    Article  CAS  PubMed  Google Scholar 

  60. Swanson LW, Sawchenko PE, Rivier J, Vale WW . Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 1983; 36: 165–186.

    Article  CAS  PubMed  Google Scholar 

  61. Dong HW, Petrovich GD, Swanson LW . Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 2001; 38: 192–246.

    Article  CAS  PubMed  Google Scholar 

  62. Sakanaka M, Shibasaki T, Lederis K . Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res 1986; 382: 213–238.

    Article  CAS  PubMed  Google Scholar 

  63. Roozendaal B, Brunson KL, Holloway BL, McGaugh JL, Baram TZ . Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc Natl Acad Sci USA 2002; 99: 13908–13913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bale TL . Stress sensitivity and the development of affective disorders. Horm Behav 2006; 50: 529–533.

    Article  CAS  PubMed  Google Scholar 

  65. Krishnan V, Nestler EJ . The molecular neurobiology of depression. Nature 2008; 455: 894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim SJ, Park SH, Choi SH, Moon BH, Lee KJ, Kang SW et al. Effects of repeated tianeptine treatment on CRF mRNA expression in non-stressed and chronic mild stress-exposed rats. Neuropharmacology 2006; 50: 824–833.

    Article  CAS  PubMed  Google Scholar 

  67. Herman JP, Cullinan WE, Watson SJ . Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 1994; 6: 433–442.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AC is incumbent of the Philip Harris and Gerald Ronson Career Development Chair. This work is supported by: A Research Grant from the Israel Science Foundation; A Research Grant from Roberto and Renata Ruhman; A Research Grant from the Legacy Heritage Biomedical Science Partnership; A Research Grant from The National Institute for Psychobiology in Israel—Founded by the Charles E Smith Family; A Research Grant from the Israel Ministry of Health; A Grant from Mr and Mrs Mike Kahn; A Research Grant from Mr Jorge David Ashkenazi, A Research Grant from Mr and Mrs Barry Wolfe; A Research Grant from Nella and Leon Benoziyo Center for Neurosciences and Neurological Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regev, L., Neufeld-Cohen, A., Tsoory, M. et al. Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol Psychiatry 16, 714–728 (2011). https://doi.org/10.1038/mp.2010.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.64

Keywords

This article is cited by

Search

Quick links