Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use

Subjects

Abstract

Memories associated with drug use increase vulnerability to relapse in substance use disorder (SUD), and there are no pharmacotherapies for the prevention of relapse. Previously, we reported a promising finding that storage of memories associated with methamphetamine (METH), but not memories for fear or food reward, is vulnerable to disruption by actin depolymerization in the basolateral amygdala complex (BLC). However, actin is not a viable therapeutic target because of its numerous functions throughout the body. Here we report the discovery of a viable therapeutic target, nonmuscle myosin IIB (NMIIB), a molecular motor that supports memory by directly driving synaptic actin polymerization. A single intra-BLC treatment with Blebbistatin (Blebb), a small-molecule inhibitor of class II myosin isoforms, including NMIIB, produced a long-lasting disruption of context-induced drug seeking (at least 30 days). Further, postconsolidation genetic knockdown of Myh10, the heavy chain of the most highly expressed NMII in the BLC, was sufficient to produce METH-associated memory loss. Blebb was found to be highly brain penetrant. A single systemic injection of the compound selectively disrupted the storage of METH-associated memory and reversed the accompanying increase in BLC spine density. This effect was specific to METH-associated memory, as it had no effect on an auditory fear memory. The effect was also independent of retrieval, as METH-associated memory was disrupted 24 h after a single systemic injection of Blebb delivered in the home cage. Together, these results argue for the further development of small-molecule inhibitors of NMII as potential therapeutics for the prevention of SUD relapse triggered by drug associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP . Limbic activation during cue-induced cocaine craving. Am J Psychiatry 1999; 156: 11–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phillips KA, Epstein DH, Preston KL . Psychostimulant addiction treatment. Neuropharmacology 2014; 87C: 150–160.

    Article  Google Scholar 

  3. Price KL, Baker NL, McRae-Clark AL, Saladin ME, Desantis SM, Santa Ana EJ et al. A randomized, placebo-controlled laboratory study of the effects of D-cycloserine on craving in cocaine-dependent individuals. Psychopharmacology (Berl) 2013; 226: 739–746.

    Article  CAS  Google Scholar 

  4. Botreau F, Paolone G, Stewart J . d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav Brain Res 2006; 172: 173–178.

    Article  CAS  PubMed  Google Scholar 

  5. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S et al. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci USA 2013; 110: 2647–2652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Myers KM, Carlezon WA Jr, Davis M . Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology 2011; 36: 274–293.

    Article  CAS  PubMed  Google Scholar 

  7. Peters J, Kalivas PW, Quirk GJ . Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 2009; 16: 279–288.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bird MK, Lohmann P, West B, Brown RM, Kirchhoff J, Raymond CR et al. The mGlu5 receptor regulates extinction of cocaine-driven behaviours. Drug Alcohol Depend 2014; 137: 83–89.

    Article  CAS  PubMed  Google Scholar 

  9. Miller CA, Marshall JF . Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 2005; 47: 873–884.

    Article  CAS  PubMed  Google Scholar 

  10. Jones B, Bukoski E, Nadel L, Fellous J-M . Remaking memories: reconsolidation updates positively motivated spatial memory in rats. Learn Mem 2012; 19: 91–98.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Monfils M-H, Cowansage KK, Klann E, LeDoux JE . Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 2009; 324: 951–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Otis JM, Werner CT, Mueller D . Noradrenergic regulation of fear and drug-associated memory reconsolidation. Neuropsychopharmacology 2014; 40: 793–803.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee TH, Szabo ST, Fowler JC, Mannelli P, Mangum OB, Beyer WF et al. Pharmacologically-mediated reactivation and reconsolidation blockade of the psychostimulant-abuse circuit: a novel treatment strategy. Drug Alcohol Depend 2012; 124: 11–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee JL, Di Ciano P, Thomas KL, Everitt BJ . Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 2005; 47: 795–801.

    Article  CAS  PubMed  Google Scholar 

  15. Childress AR, Hole AV, Ehrman RN, Robbins SJ, McLellan AT, O'Brien CP . Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monogr 1993; 137: 73–95.

    CAS  PubMed  Google Scholar 

  16. Young EJ, Aceti M, Griggs EM, Fuchs RA, Zigmond Z, Rumbaugh G et al. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization. Biol Psychiatry 2014; 75: 96–104.

    Article  CAS  PubMed  Google Scholar 

  17. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J . Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 2010; 33: 121–129.

    Article  CAS  PubMed  Google Scholar 

  18. Lai CSW, Franke TF, Gan W-B . Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 2012; 483: 87–91.

    Article  CAS  PubMed  Google Scholar 

  19. Yang G, Pan F, Gan W-B . Stably maintained dendritic spines are associated with lifelong memories. Nature 2009; 462: 920–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H . Structure–stability–function relationships of dendritic spines. Trends Neurosci 2003; 26: 360–368.

    Article  CAS  PubMed  Google Scholar 

  21. Smart FM, Halpain S . Regulation of dendritic spine stability. Hippocampus 2000; 10: 542–554.

    Article  CAS  PubMed  Google Scholar 

  22. Star EN, Kwiatkowski DJ, Murthy VN . Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 2002; 5: 239–246.

    Article  CAS  PubMed  Google Scholar 

  23. Kim C-H, Lisman JE . A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 1999; 19: 4314–4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin B, Kramár EA, Bi X, Brucher FA, Gall CM, Lynch G . Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 2005; 25: 2062–2069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 2010; 67: 603–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krucker T, Siggins GR, Halpain S . Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci 2000; 97: 6856–6861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mantzur L, Joels G, Lamprecht R . Actin polymerization in lateral amygdala is essential for fear memory formation. Neurobiol Learn Mem 2009; 91: 85–88.

    Article  CAS  PubMed  Google Scholar 

  28. Rehberg K, Bergado-Acosta JR, Koch JC, Stork O . Disruption of fear memory consolidation and reconsolidation by actin filament arrest in the basolateral amygdala. Neurobiol Learn Mem 2010; 94: 117–126.

    Article  CAS  PubMed  Google Scholar 

  29. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J . Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 2004; 24: 1962–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gavin CF, Rubio MD, Young E, Miller C, Rumbaugh G . Myosin II motor activity in the lateral amygdala is required for fear memory consolidation. Learn Mem 2012; 19: 9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rosenfeld SS, Xing J, Chen LQ, Sweeney HL . Myosin IIb is unconventionally conventional. J Biol Chem 2003; 278: 27449–27455.

    Article  CAS  PubMed  Google Scholar 

  32. Miller CA, Marshall JF . Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci 2004; 24: 6889–6897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aguilar-Valles A, Vaissiere T, Griggs EM, Mikaelsson MA, Takacs IF, Young EJ et al. Methamphetamine-associated memory is regulated by a writer and an eraser of permissive histone methylation. Biol Psychiatry 2013; 76: 57–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anders S, Huber W . Differential expression analysis for sequence count data. Genome Biol 2010; 11: R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Griggs EM, Young EJ, Rumbaugh G, Miller CA . MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 2013; 33: 1734–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guissouma H, Froidevaux MS, Hassani Z, Demeneix BA . In vivo siRNA delivery to the mouse hypothalamus confirms distinct roles of TR beta isoforms in regulating TRH transcription. Neurosci Lett 2006; 406: 240–243.

    Article  CAS  PubMed  Google Scholar 

  39. McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011; 31: 764–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miller CA, Marshall JF . Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. Eur J Neurosci 2005; 21: 1385–1393.

    Article  PubMed  Google Scholar 

  41. Stinus L, Cador M, Zorrilla EP, Koob GF . Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 2005; 30: 90–98.

    Article  CAS  PubMed  Google Scholar 

  42. Mead AN, Stephens DN . CNQX but not NBQX prevents expression of amphetamine-induced place preference conditioning: a role for the glycine site of the NMDA receptor, but not AMPA receptors. J Pharmacol Exp Ther 1999; 290: 9–15.

    CAS  PubMed  Google Scholar 

  43. Newton PM, Orr CJ, Wallace MJ, Kim C, Shin HS, Messing RO . Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J Neurosci 2004; 24: 9862–9869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Munoz-Cuevas FJ, Athilingam J, Piscopo D, Wilbrecht L . Cocaine-induced structural plasticity in frontal cortex correlates with conditioned place preference. Nat Neurosci 2013; 16: 1367–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kovács M, Tóth J, Hetényi C, Málnási-Csizmadia A, Sellers JR . Mechanism of Blebbistatin inhibition of myosin II. J Biol Chem 2004; 279: 35557–35563.

    Article  PubMed  Google Scholar 

  46. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 2004; 30: 296–309.

    Article  Google Scholar 

  47. Wells AM, Arguello AA, Xie X, Blanton MA, Lasseter HC, Reittinger AM et al. Extracellular signal-regulated kinase in the basolateral amygdala, but not the nucleus accumbens core, is critical for context-response-cocaine memory reconsolidation in rats. Neuropsychopharmacology 2013; 38: 753–762.

    Article  CAS  PubMed  Google Scholar 

  48. Reichel CM, See RE . Modafinil effects on reinstatement of methamphetamine seeking in a rat model of relapse. Psychopharmacology 2010; 210: 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rubio FJ, Liu QR, Li X, Cruz FC, Leao RM, Warren BL et al. Context-induced reinstatement of methamphetamine seeking is associated with unique molecular alterations in fos-expressing dorsolateral striatum neurons. J Neurosci 2015; 35: 5625–5639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bond LM, Tumbarello DA, Kendrick-Jones J, Buss F . Small-molecule inhibitors of myosin proteins. Future Med Chem 2013; 5: 41–52.

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Chong M, Wang H, Zhang J, Xu H, Liu D . Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida. In Vitro Cell Dev Biol Anim 2014; 51: 211–217.

    Article  PubMed  Google Scholar 

  52. Eddinger TJ, Meer DP, Miner AS, Meehl J, Rovner AS, Ratz PH . Potent inhibition of arterial smooth muscle tonic contractions by the selective myosin II inhibitor, blebbistatin. J Pharmacol Exp Ther 2007; 320: 865–870.

    Article  CAS  PubMed  Google Scholar 

  53. Rubio MD, Johnson R, Miller CA, Huganir RL, Rumbaugh G . Regulation of synapse structure and function by distinct myosin II motors. J Neurosci 2011; 31: 1448–1460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 2006; 5: 1158–1170.

    Article  CAS  PubMed  Google Scholar 

  55. Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M . Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 2004; 279: 21003–21011.

    Article  CAS  PubMed  Google Scholar 

  56. Ertl P, Rohde B, Selzer P . Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 2000; 43: 3714–3717.

    Article  CAS  PubMed  Google Scholar 

  57. Hitchcock SA, Pennington LD . Structure−brain exposure relationships. J Med Chem 2006; 49: 7559–7583.

    Article  CAS  PubMed  Google Scholar 

  58. Crawley JN . What's Wrong With My Mouse: Behavioral Phenotyping of Transgenic and Knockout Mice, 2nd (edn). Wiley Press: Hoboken, NJ, 2007; pp 44–57.

    Book  Google Scholar 

  59. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 2000; 28: 41–51.

    Article  CAS  PubMed  Google Scholar 

  60. Heinrichs SC, Leite-Morris KA, Guy MD, Goldberg LR, Young AJ, Kaplan GB . Dendritic structural plasticity in the basolateral amygdala after fear conditioning and its extinction in mice. Behav Brain Res 2013; 248: 80–84.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pignataro A, Middei S, Borreca A, Ammassari-Teule M . Indistinguishable pattern of amygdala and hippocampus rewiring following tone or contextual fear conditioning in C57BL/6 mice. Front Behav Neurosci 2013; 7: 156.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Medeiros NA, Burnette DT, Forscher P . Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 2006; 8: 216–226.

    Article  Google Scholar 

  63. Daley DC, Mercer D . Therapy Manuals for Drug Addiction. NIH: : Bethesda, MD, USA, 2002.

    Google Scholar 

  64. Tran-Nguyen LT, Fuchs RA, Coffey GP, Baker DA, O'Dell LE, Neisewander JL . Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 1998; 19: 48–59.

    Article  CAS  PubMed  Google Scholar 

  65. West EA, Saddoris MP, Kerfoot EC, Carelli RM . Prelimbic and infralimbic cortical regions differentially encode cocaine-associated stimuli and cocaine-seeking before and following abstinence. Eur J Neurosci 2014; 39: 1891–1902.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Grimm JW, Hope BT, Wise RA, Shaham Y . Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 2001; 412: 141–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y . Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 2003; 23: 742–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee BR, Ma YY, Huang YH, Wang X, Otaka M, Ishikawa M et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci 2013; 16: 1644–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma YY, Lee BR, Wang X, Guo C, Liu L, Cui R et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 2014; 83: 1453–1467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 2003; 299: 1743–1747.

    Article  CAS  PubMed  Google Scholar 

  71. Kepiro M, Varkuti BH, Vegner L, Voros G, Hegyi G, Varga M et al. para-Nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem Int Ed Engl 2014; 53: 8211–8215.

    Article  CAS  PubMed  Google Scholar 

  72. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489: 391–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Scripps Florida Genomics Core for their assistance with RNA sequencing, the Scripps Florida Behavior Core for providing behavioral equipment, Dr Christine Gall for her helpful comments and Colton Hoffer for technical assistance. This work was supported by grants from the National Institute on Drug Abuse (R01DA034116, R01DA034116S1 and R21DA036376 to CAM), National Institute for Neurological Disorders and Stroke (R01NS064079 to GR) and National Institute for Mental Health (R01MH096847 to GR) and the Brain and Behavior Research Foundation (NARSAD Young Investigator Awards to AMB and SES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C A Miller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, E., Blouin, A., Briggs, S. et al. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use. Mol Psychiatry 21, 615–623 (2016). https://doi.org/10.1038/mp.2015.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.103

This article is cited by

Search

Quick links