Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior

Subjects

Abstract

Impulsivity is an endophenotype of vulnerability for compulsive behaviors. However, the neural mechanisms whereby impulsivity facilitates the development of compulsive disorders, such as addiction or obsessive compulsive disorder, remain unknown. We first investigated, in rats, anatomical and functional correlates of impulsivity in the anterior insular (AI) cortex by measuring both the thickness of, and cellular plasticity markers in, the AI with magnetic resonance imaging and in situ hybridization of the immediate early gene zif268, respectively. We then investigated the influence of bilateral AI cortex lesions on the high impulsivity trait, as measured in the five-choice serial reaction time task (5-CSRTT), and the associated propensity to develop compulsivity as measured by high drinking levels in a schedule-induced polydipsia procedure (SIP). We demonstrate that the AI cortex causally contributes to individual vulnerability to impulsive–compulsive behavior in rats. Motor impulsivity, as measured by premature responses in the 5-CSRTT, was shown to correlate with the thinness of the anterior region of the insular cortex, in which highly impulsive (HI) rats expressed lower zif268 mRNA levels. Lesions of AI reduced impulsive behavior in HI rats, which were also highly susceptible to develop compulsive behavior as measured in a SIP procedure. AI lesions also attenuated both the development and the expression of SIP. This study thus identifies the AI as a novel neural substrate of maladaptive impulse control mechanisms that may facilitate the development of compulsive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Menzies L, Achard S, Chamberlain S, Fineberg N, Chen C, del Campo N et al. Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 2007; 130 (Pt 12): 3223–3236.

    Article  Google Scholar 

  2. Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD . Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci 2012; 16: 81–91.

    Article  Google Scholar 

  3. Lejuez CW, Magidson JF, Mitchell SH, Sinha R, Stevens MC, de Wit H . Behavioral and biological indicators of impulsivity in the development of alcohol use, problems, and disorders. Alcohol Clin Exp Res 2010; 34: 1334–1345.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dalley J, Everitt B, Robbins T . Impulsivity, compulsivity, and top-down cognitive control. Neuron 2011; 69: 680–694.

    Article  CAS  Google Scholar 

  5. Ersche K, Turton A, Chamberlain S, Muller U, Bullmore E, Robbins T . Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. Am J Psychiatry 2012; 169: 926–936.

    Article  Google Scholar 

  6. Fernandez-Serrano M, Perales J, Moreno-Lopez L, Perez-Garcia M, Verdejo-Garcia A . Neuropsychological profiling of impulsivity and compulsivity in cocaine dependent individuals. Psychopharmacology (Berl) 2012; 219: 673–683.

    Article  CAS  Google Scholar 

  7. Wilens T . The nature of the relationship between attention-deficit/hyperactivity disorder and substance use. J Clin Psychiatry 2007; 68 (Suppl 11): 4–8.

    CAS  PubMed  Google Scholar 

  8. Brook D, Brook J, Zhang C, Koppel J . Association between attention-deficit/hyperactivity disorder in adolescence and substance use disorders in adulthood. Arch Pediatr Adolesc Med 2010; 164: 930–934.

    Article  Google Scholar 

  9. Lopez-Ibor JJ . Impulse control in obsessive-compulsive disorder: a biopsychopathological approach. Prog Neuropsychopharmacol Biol Psychiatry 1990; 14: 709–718.

    Article  Google Scholar 

  10. Robbins TW . The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 2002; 163: 362–380.

    Article  CAS  Google Scholar 

  11. Ansquer S, Belin-Rauscent A, Dugast E, Duran T, Benatru I, Mar AC et al. Atomoxetine decreases vulnerability to develop compulsivity in high impulsive rats. Biol Psychiatry 2014; 75: 825–832.

    Article  CAS  Google Scholar 

  12. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ . High impulsivity predicts the switch to compulsive cocaine-taking. Science 2008; 320: 1352–1355.

    Article  CAS  Google Scholar 

  13. Falk JL . The motivational properties of schedule-induced polydipsia. J Exp Anal Behav 1966; 9: 19–25.

    Article  CAS  Google Scholar 

  14. Moreno M, Flores P . Schedule-induced polydipsia as a model of compulsive behavior: neuropharmacological and neuroendocrine bases. Psychopharmacology (Berl) 2012; 219: 647–659.

    Article  CAS  Google Scholar 

  15. American Psychiatric Association. The Diagnostic and Statistical Manual of Mental Disorders: DSM 5. Book point US: Washington, DC, 2013.

  16. Dantzer R, Terlouw C, Mormede P, Le Moal M . Schedule-induced polydipsia experience decreases plasma corticosterone levels but increases plasma prolactin levels. Physiol Behav 1988; 43: 275–279.

    Article  CAS  Google Scholar 

  17. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ . Neural systems supporting interoceptive awareness. Nat Neurosci 2004; 7: 189–195.

    Article  CAS  Google Scholar 

  18. Phillips ML, Marks IM, Senior C, Lythgoe D, O'Dwyer AM, Meehan O et al. A differential neural response in obsessive-compulsive disorder patients with washing compared with checking symptoms to disgust. Psychol Med 2000; 30: 1037–1050.

    Article  CAS  Google Scholar 

  19. Fineberg N, Potenza M, Chamberlain S, Berlin H, Menzies L, Bechara A et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 2009; 35: 591–604.

    Article  Google Scholar 

  20. Dambacher F, Sack AT, Lobbestael J, Arntz A, Brugman S, Schuhmann T . Out of control evidence for anterior insula involvement in motor impulsivity and reactive aggression. Soc Cogn Affect Neurosci 2014; 10: 508–516.

    Article  Google Scholar 

  21. Strigo IA, Matthews SC, Simmons AN, Oberndorfer T, Klabunde M, Reinhardt LE et al. Altered insula activation during pain anticipation in individuals recovered from anorexia nervosa: evidence of interoceptive dysregulation. Int J Eat Disord 2013; 46: 23–33.

    Article  Google Scholar 

  22. Hoptman MJ, Antonius D, Mauro CJ, Parker EM, Javitt DC . Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior. Am J Psychiatry 2014; 171: 939–948.

    Article  Google Scholar 

  23. Chung T, Clark DB . Insula white matter volume linked to binge drinking frequency through enhancement motives in treated adolescents. Alcohol Clin Exp Res 2014; 38: 1932–1940.

    Article  Google Scholar 

  24. Verdejo-Garcia A, Bechara A . A somatic marker theory of addiction. Neuropharmacology 2009; 56 (Suppl 1): 48–62.

    Article  CAS  Google Scholar 

  25. Paulus MP, Stein MB . An insular view of anxiety. Biol Psychiatry 2006; 60: 383–387.

    Article  Google Scholar 

  26. Ersche K, Jones P, Williams G, Turton A, Robbins T, Bullmore E . Abnormal brain structure implicated in stimulant drug addiction. Science 2012; 335: 601–604.

    Article  CAS  Google Scholar 

  27. van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ, Uylings HBM et al. The major symptom dimensions of obsessive-compulsive disorder are mediated by partially distinct neural systems. Brain 2009; 132: 853–868.

    Article  Google Scholar 

  28. Moreno-Lopez L, Catena A, Fernandez-Serrano M, Delgado-Rico E, Stamatakis E, Perez-Garcia M et al. Trait impulsivity and prefrontal gray matter reductions in cocaine dependent individuals. Drug Alcohol Depend 2012; 125: 208–214.

    Article  Google Scholar 

  29. Song A, Jung WH, Jang JH, Kim E, Shim G, Park HY et al. Disproportionate alterations in the anterior and posterior insular cortices in obsessive-compulsive disorder. PLoS One 2011; 6: e22361.

    Article  CAS  Google Scholar 

  30. Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L . Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. Neuroimage 2010; 49: 977–983.

    Article  Google Scholar 

  31. Remijnse P, van den Heuvel O, Nielen M, Vriend C, Hendriks G, Hoogendijk W et al. Cognitive inflexibility in obsessive-compulsive disorder and major depression is associated with distinct neural correlates. PLoS One 2013; 8: e59600.

    Article  CAS  Google Scholar 

  32. Churchwell JC, Yurgelun-Todd DA . Age-related changes in insula cortical thickness and impulsivity: significance for emotional development and decision-making. Dev Cogn Neurosci 2013; 6: 80–86.

    Article  Google Scholar 

  33. Ersche K, Barnes A, Simon Jones P, Morein-Zamir S, Robbins T, Bullmore E . Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 2011; 134 (Pt 7): 2013–2024.

    Article  Google Scholar 

  34. Li C, Zhu N, Meng X, Li Y, Sui N . Effects of inactivating the agranular or granular insular cortex on the acquisition of the morphine-induced conditioned place preference and naloxone-precipitated conditioned place aversion in rats. J Psychopharmacol 2013; 27: 837–844.

    Article  Google Scholar 

  35. Wu W, Li H, Liu Y, Huang X, Chen L, Zhai H . Involvement of insular muscarinic cholinergic receptors in morphine-induced conditioned place preference in rats. Psychopharmacology (Berl) 2014; 231: 4109–4118.

    Article  CAS  Google Scholar 

  36. Pattij T, Schetters D, Schoffelmeer A . Dopaminergic modulation of impulsive decision making in the rat insular cortex. Behav Brain Res 2014; 270: 118–124.

    Article  CAS  Google Scholar 

  37. Naqvi N, Bechara A . The hidden island of addiction: the insula. Trends Neurosci 2009; 32: 56–67.

    Article  CAS  Google Scholar 

  38. Murray JE, Dilleen R, Pelloux Y, Economidou D, Dalley JW, Belin D et al. Increased impulsivity retards the transition to dorsolateral striatal dopamine control of cocaine seeking. Biol Psychiatry 2014; 76: 15–22.

    Article  CAS  Google Scholar 

  39. Besson M, Pelloux Y, Dilleen R, Theobald DE, Lyon A, Belin-Rauscent A et al. Cocaine modulation of frontostriatal expression of Zif268, D2, and 5-HT2c receptors in high and low impulsive rats. Neuropsychopharmacology 2013; 38: 1963–1973.

    Article  CAS  Google Scholar 

  40. Platt B, Beyer C, Schechter L, Rosenzweig-Lipson S . Schedule-induced polydipsia: a rat model of obsessive-compulsive disorder. Curr Protoc Neurosci 2008; Chapter 9: Unit 9.27.

    PubMed  Google Scholar 

  41. Dilleen R, Pelloux Y, Mar A, Molander A, Robbins T, Everitt B et al. High anxiety is a predisposing endophenotype for loss of control over cocaine, but not heroin, self-administration in rats. Psychopharmacology (Berl) 2012; 222: 89–89.

    Article  CAS  Google Scholar 

  42. Vanhille N, Belin-Rauscent A, Mar AC, Ducret E, Belin D . High locomotor reactivity to novelty is associated with an increased propensity to choose saccharin over cocaine: new insights into the vulnerability to addiction. Neuropsychopharmacology 2015; 40: 577–589.

    Article  CAS  Google Scholar 

  43. Sawiak SJ, Wood NI, Carpenter TA, Morton AJ . Huntington's disease mouse models online: high-resolution MRI images with stereotaxic templates for computational neuroanatomy. PLoS One 2012; 7: e53361.

    Article  CAS  Google Scholar 

  44. Sawiak SJ, Wood NI, Williams GB, Morton AJ, Carpenter TA . Voxel-based morphometry with templates and validation in a mouse model of Huntington's disease. Magnetic Resonance Imaging 2013; 31: 1522–1531.

    Article  Google Scholar 

  45. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates5 edn.Elsevier Academic Press: Amsterdam, 2005.

    Google Scholar 

  46. Belin D, Deroche-Gamonet V, Jaber M . Cocaine-induced sensitization is associated with altered dynamics of transcriptional responses of the dopamine transporter, tyrosine hydroxylase, and dopamine D2 receptors in C57Bl/6J mice. Psychopharmacology (Berl) 2007; 193: 567–578.

    Article  CAS  Google Scholar 

  47. Dalley JW, Fryer T, Brichard L, Robinson E, Theobald D, Laane K et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007; 315: 1267–1270.

    Article  CAS  Google Scholar 

  48. Allen GV, Saper CB, Hurley KM, Cechetto DF . Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 1991; 311: 1–16.

    Article  CAS  Google Scholar 

  49. Zaki J, Davis J, Ochsner K . Overlapping activity in anterior insula during interoception and emotional experience. Neuroimage 2012; 62: 493–499.

    Article  Google Scholar 

  50. Cardinal R, Pennicott DR, Lakmali C, Robbins TW . Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 2001; 292: 2499–2501.

    Article  CAS  Google Scholar 

  51. Besson M, Belin D, McNamara R, Theobald DE, Castel A, Beckett V et al. Dissociable control of impulsivity in rats by dopamine D2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology 2009; 35: 560–569.

    Article  Google Scholar 

  52. Reynolds SM, Zahm DS . Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci 2005; 25: 11757–11767.

    Article  CAS  Google Scholar 

  53. Weissenborn R, Blaha CD, Winn P, Phillips AG . Schedule-induced polydipsia and the nucleus accumbens: electrochemical measurements of dopamine efflux and effects of excitotoxic lesions in the core. Behav Brain Res 1996; 75: 147–158.

    Article  CAS  Google Scholar 

  54. Robbins TW, Koob GF . Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 1980; 285: 409–412.

    Article  CAS  Google Scholar 

  55. Thomas K, Arroyo M, Everitt B . Induction of the learning and plasticity-associated gene Zif268 following exposure to a discrete cocaine-associated stimulus. Eur J Neurosci 2003; 17: 1964–1972.

    Article  Google Scholar 

  56. Valjent E, Aubier B, Corbille AG, Brami-Cherrier K, Caboche J, Topilko P et al. Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine. J Neurosci 2006; 26: 4956–4960.

    Article  CAS  Google Scholar 

  57. Shi CJ, Cassell MD . Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 1998; 399: 440–468.

    Article  CAS  Google Scholar 

  58. Chudasama Y, Passetti F, Rhodes SE, Lopian D, Desai A, Robbins TW . Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behav Brain Res 2003; 146: 105–119.

    Article  CAS  Google Scholar 

  59. Fineberg N, Chamberlain S, Hollander E, Boulougouris V, Robbins T . Translational approaches to obsessive-compulsive disorder: from animal models to clinical treatment. Br J Pharmacol 2011; 164: 1044–1061.

    Article  CAS  Google Scholar 

  60. Brett LP, Levine S . The pituitary-adrenal response to "minimized" schedule-induced drinking. Physiol Behav 1981; 26: 153–158.

    Article  CAS  Google Scholar 

  61. Cai W, Ryali S, Chen T, Li CS, Menon V . Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. J Neurosci 2014; 34: 14652–14667.

    Article  CAS  Google Scholar 

  62. Augustine JR . Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 1996; 22: 229–244.

    Article  CAS  Google Scholar 

  63. Schilman EA, Uylings HB, Galis-de Graaf Y, Joel D, Groenewegen HJ . The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci Lett 2008; 432: 40–45.

    Article  CAS  Google Scholar 

  64. Cho YT, Fromm S, Guyer AE, Detloff A, Pine DS, Fudge JL et al. Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. Neuroimage 2013; 66: 508–521.

    Article  Google Scholar 

  65. Mogenson GJ, Jones DL, Yim CY . From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 1980; 14: 69–97.

    Article  CAS  Google Scholar 

  66. Weller J, Levin I, Shiv B, Bechara A . The effects of insula damage on decision-making for risky gains and losses. Soc Neurosci 2009; 4: 347–358.

    Article  Google Scholar 

  67. He Q, Xiao L, Xue G, Wong S, Ames S, Schembre S et al. Poor ability to resist tempting calorie rich food is linked to altered balance between neural systems involved in urge and self-control. Nutr J 2014; 13: 92.

    Article  Google Scholar 

  68. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ . Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 2001; 292: 2499–2501.

    Article  CAS  Google Scholar 

  69. Craig A . Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos Trans R Soc Lond B Biol Sci 2009; 364: 1933–1942.

    Article  Google Scholar 

  70. Xie C, Li S, Shao Y, Fu L, Goveas J, Ye E et al. Identification of hyperactive intrinsic amygdala network connectivity associated with impulsivity in abstinent heroin addicts. Behav Brain Res 2011; 216: 639–646.

    Article  Google Scholar 

  71. Bechara A, Damasio AR . The somatic marker hypothesis: a neural theory of economic decision. Game Econ Behav 2005; 52: 336–372.

    Article  Google Scholar 

  72. Bechara A, Van der Linden M . Decision-making and impulse control after frontal lobe injuries. Curr Opin Neurol 2005; 18: 734–739.

    Article  Google Scholar 

Download references

Acknowledgements

This research was carried out within the Department of Psychology and the Department of Pharmacology of the University of Cambridge, as well as the INSERM AVENIR team Psychobiology of Compulsive Disorders of the University of Poitiers. It was supported by an INSERM AVENIR grant and a FYSSEN foundation grant to DB. M-LD was supported by a PhD fellowship from the Fondation pour la Recherche Médicale (FRM) and AB-R was supported by a post-doctoral fellowship from the INSERM. BJE was supported by the United Kingdom Medical Research Council (MRC) grant 9536855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Belin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belin-Rauscent, A., Daniel, ML., Puaud, M. et al. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Mol Psychiatry 21, 491–499 (2016). https://doi.org/10.1038/mp.2015.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.140

This article is cited by

Search

Quick links