Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Comprehensive proteomic analysis of the human spliceosome

Abstract

The precise excision of introns from pre-messenger RNA is performed by the spliceosome, a macromolecular machine containing five small nuclear RNAs and numerous proteins. Much has been learned about the protein components of the spliceosome from analysis of individual purified small nuclear ribonucleoproteins1 and salt-stable spliceosome ‘core’ particles2,3. However, the complete set of proteins that constitutes intact functional spliceosomes has yet to be identified. Here we use maltose-binding protein affinity chromatography4,5 to isolate spliceosomes in highly purified and functional form. Using nanoscale microcapillary liquid chromatography tandem mass spectrometry6, we identify 145 distinct spliceosomal proteins, making the spliceosome the most complex cellular machine so far characterized. Our spliceosomes comprise all previously known splicing factors and 58 newly identified components. The spliceosome contains at least 30 proteins with known or putative roles in gene expression steps other than splicing. This complexity may be required not only for splicing multi-intronic metazoan pre-messenger RNAs, but also for mediating the extensive coupling between splicing and other steps in gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of spliceosomes.
Figure 2: The MBP-purified spliceosomes are functional in an in vitro complementation assay.

Similar content being viewed by others

References

  1. Will, C. L. & Luhrmann, R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 13, 290–301 (2001)

    Article  CAS  Google Scholar 

  2. Neubauer, G. et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genet. 20, 46–50 (1998)

    Article  CAS  Google Scholar 

  3. Bennett, M., Michaud, S., Kingston, J. & Reed, R. Protein components specifically associated with prespliceosome and spliceosome complexes. Genes Dev. 6, 1986–2000 (1992)

    Article  CAS  Google Scholar 

  4. Zhou, Z. et al. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407, 401–405 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Das, R., Zhou, Z. & Reed, R. Functional association of U2 snRNP with the ATP-independent spliceosomal complex E. Mol. Cell 5, 779–787 (2000)

    Article  CAS  Google Scholar 

  6. Licklider, L. J., Thoreen, C. C., Peng, J. & Gygi, S. P. Automation of nanoscale microcapillary liquid chromatography-tandem mass spectrometry with a vented column. Anal. Chem. 74, 3076–3083 (2002)

    Article  CAS  Google Scholar 

  7. Staley, J. P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998)

    Article  CAS  Google Scholar 

  8. Burge, C. B., Tuschl, T. H. & Sharp, P. A. The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 525–560 (Cold Spring Harbor Laboratory Press, New York, 1999)

    Google Scholar 

  9. Hastings, M. L. & Krainer, A. R. Pre-mRNA splicing in the new millennium. Curr. Opin. Cell Biol. 13, 302–309 (2001)

    Article  CAS  Google Scholar 

  10. Bennett, M., Pinol-Roma, S., Staknis, D., Dreyfuss, G. & Reed, R. Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol. Cell Biol. 12, 3165–3175 (1992)

    Article  CAS  Google Scholar 

  11. Fu, X. D. The superfamily of arginine/serine-rich splicing factors. RNA 1, 663–680 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tacke, R. & Manley, J. L. Determinants of SR protein specificity. Curr. Opin. Cell Biol. 11, 358–362 (1999)

    Article  CAS  Google Scholar 

  13. Graveley, B. R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000)

    Article  CAS  Google Scholar 

  14. Zhou, Z. & Reed, R. Human homologs of yeast prp16 and prp17 reveal conservation of the mechanism for catalytic step II of pre-mRNA splicing. EMBO J. 17, 2095–2106 (1998)

    Article  CAS  Google Scholar 

  15. Reed, R. & Hurt, E. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108, 523–531 (2002)

    Article  CAS  Google Scholar 

  16. Vithana, E. N. et al. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11). Mol. Cell 8, 375–381 (2001)

    Article  CAS  Google Scholar 

  17. Makarova, O. V., Makarov, E. M., Liu, S., Vornlocher, H. P. & Luhrmann, R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6•U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 21, 1148–1157 (2002)

    Article  CAS  Google Scholar 

  18. Chakarova, C. F. et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Hum. Mol. Genet. 11, 87–92 (2002)

    Article  CAS  Google Scholar 

  19. McKie, A. B. et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 10, 1555–1562 (2001)

    Article  CAS  Google Scholar 

  20. Little, N. A., Hastie, N. D. & Davies, R. C. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum. Mol. Genet. 9, 2231–2239 (2000)

    Article  CAS  Google Scholar 

  21. Horowitz, D. S., Lee, E. J., Mabon, S. A. & Misteli, T. A cyclophilin functions in pre-mRNA splicing. EMBO J. 21, 470–480 (2002)

    Article  CAS  Google Scholar 

  22. Andersen, J. S. et al. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12, 1–11 (2002)

    Article  Google Scholar 

  23. Stevens, S. W. et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol. Cell 9, 31–44 (2002)

    Article  CAS  Google Scholar 

  24. Cartegni, L., Chew, S. L. & Krainer, A. Listening to silence and understanding nonsense: Exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002)

    Article  CAS  Google Scholar 

  25. Bentley, D. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell Biol. 11, 347–351 (1999)

    Article  CAS  Google Scholar 

  26. Hirose, Y. & Manley, J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 14, 1415–1429 (2000)

    CAS  PubMed  Google Scholar 

  27. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002)

    Article  ADS  CAS  Google Scholar 

  28. Fong, Y. W. & Zhou, Q. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929–933 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Strasser, K. et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304–308 (2002)

    Article  ADS  Google Scholar 

  30. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank. N. Dorman, E. Ibrahim and K. Magni for comments on the manuscript; C. Thoreen for database support; R. Das for SF3a-depleted nuclear extract; and R. Luhrmann and G. Dreyfuss for antibodies. HeLa cells were obtained from the National Cell Culture Center. This work was supported by the NIH (S.P.G. and R.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Reed.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Licklider, L., Gygi, S. et al. Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185 (2002). https://doi.org/10.1038/nature01031

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01031

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing