Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stargazin modulates AMPA receptor gating and trafficking by distinct domains

Abstract

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors mediate fast excitatory synaptic transmission in the brain. These ion channels rapidly deactivate and desensitize, which determine the time course of synaptic transmission. Here, we find that the AMPA receptor interacting protein, stargazin, not only mediates AMPA receptor trafficking but also shapes synaptic responses by slowing channel deactivation and desensitization. The cytoplasmic tail of stargazin determines receptor trafficking, whereas the ectodomain controls channel properties. Stargazin alters AMPA receptor kinetics by increasing the rate of channel opening. Disrupting the interaction of stargazin ectodomain with hippocampal AMPA receptors alters the amplitude and shape of synaptic responses, establishing a crucial function for stargazin in controlling the efficacy of synaptic transmission in the brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stargazin enhances glutamate-evoked currents in Xenopus laevis oocytes injected with GluR1.
Figure 2: Stargazin mediates AMPAR trafficking and also modulates AMPAR agonist efficacy.
Figure 3: Stargazin regulates AMPAR trafficking and agonist efficacy by distinct mechanisms.
Figure 4: Stargazin slows AMPAR desensitization and deactivation.
Figure 5: Stargazin increases AMPAR open channel probability.
Figure 6: The ectodomain of stargazin influences the amplitude and decay of EPSCs in hippocampal neurons.

References

  1. Nakanishi, S. Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603 (1992)

    Article  ADS  CAS  Google Scholar 

  2. Wisden, W. & Seeburg, P. H. Mammalian ionotropic glutamate receptors. Curr. Opin. Neurobiol. 3, 291–298 (1993)

    Article  CAS  Google Scholar 

  3. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994)

    Article  CAS  Google Scholar 

  4. Mayer, M. L. & Armstrong, N. Structure and function of glutamate receptor ion channels. Annu. Rev. Physiol. 66, 161–181 (2004)

    Article  CAS  Google Scholar 

  5. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S. F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999)

    CAS  PubMed  Google Scholar 

  6. Sheng, M. & Kim, M. J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002)

    Article  CAS  Google Scholar 

  8. Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003)

    Article  CAS  Google Scholar 

  9. Song, I. & Huganir, R. L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002)

    Article  CAS  Google Scholar 

  10. Barry, M. F. & Ziff, E. B. Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol. 12, 279–286 (2002)

    Article  CAS  Google Scholar 

  11. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Hashimoto, K. et al. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J. Neurosci. 19, 6027–6036 (1999)

    Article  CAS  Google Scholar 

  13. Letts, V. A. et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nature Genet. 19, 340–347 (1998)

    Article  CAS  Google Scholar 

  14. Chen, L., Bao, S., Qiao, X. & Thompson, R. F. Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel γ subunit. Proc. Natl Acad. Sci. USA 96, 12132–12137 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003)

    Article  CAS  Google Scholar 

  16. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000)

    Article  CAS  Google Scholar 

  17. Arikkath, J. & Campbell, K. P. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307 (2003)

    Article  CAS  Google Scholar 

  18. Chen, L., El-Husseini, A., Tomita, S., Bredt, D. S. & Nicoll, R. A. Stargazin differentially controls the trafficking of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate and kainate receptors. Mol. Pharmacol. 64, 703–706 (2003)

    Article  CAS  Google Scholar 

  19. Tomita, S., Fukata, M., Nicoll, R. A. & Bredt, D. S. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 303, 1508–1511 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Zerangue, N., Schwappach, B., Jan, Y. N. & Jan, L. Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 22, 537–548 (1999)

    Article  CAS  Google Scholar 

  21. Robert, A. & Howe, J. R. How AMPA receptor desensitization depends on receptor occupancy. J. Neurosci. 23, 847–858 (2003)

    Article  CAS  Google Scholar 

  22. Swanson, G. T., Kamboj, S. K. & Cull-Candy, S. G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997)

    Article  CAS  Google Scholar 

  23. Banke, T. G. et al. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89–102 (2000)

    Article  CAS  Google Scholar 

  24. Jin, R., Banke, T. G., Mayer, M. L., Traynelis, S. F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nature Neurosci. 6, 803–810 (2003)

    Article  CAS  Google Scholar 

  25. Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl Acad. Sci. USA 96, 3269–3274 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Mansour, M., Nagarajan, N., Nehring, R. B., Clements, J. D. & Rosenmund, C. Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron 32, 841–853 (2001)

    Article  CAS  Google Scholar 

  27. Smith, T. C., Wang, L. Y. & Howe, J. R. Heterogeneous conductance levels of native AMPA receptors. J. Neurosci. 20, 2073–2085 (2000)

    Article  CAS  Google Scholar 

  28. Wyllie, D. J., Traynelis, S. F. & Cull-Candy, S. G. Evidence for more than one type of non-NMDA receptor in outside-out patches from cerebellar granule cells of the rat. J. Physiol. (Lond.) 463, 193–226 (1993)

    Article  CAS  Google Scholar 

  29. Tomita, S., Stein, V., Stocker, T. J., Nicoll, R. A. & Bredt, D. S. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45, 269–277 (2005)

    Article  CAS  Google Scholar 

  30. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl Acad. Sci. USA 99, 13902–13907 (2002)

    Article  ADS  CAS  Google Scholar 

  31. Zheng, Y., Mellem, J. E., Brockie, P. J., Madsen, D. M. & Maricq, A. V. SOL-1 is a CUB-domain protein required for GLR-1 glutamate receptor function in C. elegans. Nature 427, 451–457 (2004)

    Article  ADS  CAS  Google Scholar 

  32. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000)

    Article  CAS  Google Scholar 

  33. Geiger, J. R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995)

    Article  CAS  Google Scholar 

  34. Jonas, P. The time course of signaling at central glutamatergic synapses. News Physiol. Sci. 15, 83–89 (2000)

    ADS  CAS  PubMed  Google Scholar 

  35. Koh, J. Y., Goldberg, M. P., Hartley, D. M. & Choi, D. W. Non-NMDA receptor-mediated neurotoxicity in cortical culture. J. Neurosci. 10, 693–705 (1990)

    Article  CAS  Google Scholar 

  36. Staubli, U., Rogers, G. & Lynch, G. Facilitation of glutamate receptors enhances memory. Proc. Natl Acad. Sci. USA 91, 777–781 (1994)

    Article  ADS  CAS  Google Scholar 

  37. Lynch, G. et al. Evidence that a positive modulator of AMPA-type glutamate receptors improves delayed recall in aged humans. Exp. Neurol. 145, 89–92 (1997)

    Article  CAS  Google Scholar 

  38. Goff, D. C. et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J. Clin. Psychopharmacol. 21, 484–487 (2001)

    Article  CAS  Google Scholar 

  39. O'Neill, M. J. et al. Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson's disease. Eur. J. Pharmacol. 486, 163–174 (2004)

    Article  CAS  Google Scholar 

  40. Priel, A. et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J. Neurosci. 25, 2682–2686 (2005)

    Article  CAS  Google Scholar 

  41. Sekiguchi, M., Nishikawa, K., Aoki, S. & Wada, K. A desensitization-selective potentiator of AMPA-type glutamate receptors. Br. J. Pharmacol. 136, 1033–1041 (2002)

    Article  CAS  Google Scholar 

  42. Stein, V., House, D. R., Bredt, D. S. & Nicoll, R. A. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J. Neurosci. 23, 5503–5506 (2003)

    Article  CAS  Google Scholar 

  43. Robert, A., Irizarry, S. N., Hughes, T. E. & Howe, J. R. Subunit interactions and AMPA receptor desensitization. J. Neurosci. 21, 5574–5586 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Kam for help with analysing mEPSCs; A. Tzingounis for discussions; A. Sui for technical assistance; and R Moberg for help with preparation of the manuscript. D.S.B. is supported by grants from the National Institutes of Health, the Christopher Reeve Paralysis Foundation and the Human Frontier Science Program. R.A.N. is supported by grants from NIH. J.R.H. is supported by grants from NIH. K.W. is supported by grants from Grants-in-Aid for Scientific Research from the Ministry of Health, Labour and Welfare of Japan, and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. D.S.B. is an established investigator of the American Heart Association. R.A.N. is a member of the Keck Center for Integrative Neuroscience and the Silvio Conte Center for Neuroscience Research. S.T. is supported by a grant from NIH. H.A. is a Howard Hughes Medical Institute predoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger A. Nicoll or David S. Bredt.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Stargazin does not change the I-V relationship for homomeric GluR1 flip (GluR1i) or heteromeric (GluR1i/GluR2i) AMPA receptors. (JPG 56 kb)

Supplementary Figure S2

Overexpression of wild-type stargazin does not affect the decay kinetics (a) or amplitude (b) of hippocampal mEPSCs. (JPG 76 kb)

Supplementary Figure S3

The ectodomain of stargazin is necessary to properly restore the time course and amplitude of synaptic currents in stg (-/-) cerebellar granules cells. (JPG 72 kb)

Supplementary Figure Legends

Legends to accompany the above Supplementary Figures. (DOC 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, S., Adesnik, H., Sekiguchi, M. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005). https://doi.org/10.1038/nature03624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03624

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing