Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors

Abstract

Lineage commitment and differentiation to a mature cell type are considered to be unidirectional and irreversible processes under physiological conditions1. The commitment of haematopoietic progenitors to the B-cell lineage2,3 and their development to mature B lymphocytes4,5 critically depend on the transcription factor encoded by the paired box gene 5 (Pax5). Here we show that conditional Pax5 deletion in mice allowed mature B cells from peripheral lymphoid organs to dedifferentiate in vivo back to early uncommitted progenitors in the bone marrow, which rescued T lymphopoiesis in the thymus of T-cell-deficient mice. These B-cell-derived T lymphocytes carried not only immunoglobulin heavy- and light-chain gene rearrangements but also participated as functional T cells in immune reactions. Mice lacking Pax5 in mature B cells also developed aggressive lymphomas, which were identified by their gene expression profile as progenitor cell tumours. Hence, the complete loss of Pax5 in late B cells could initiate lymphoma development and uncovered an extraordinary plasticity of mature peripheral B cells despite their advanced differentiation stage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of aggressive progenitor cell lymphomas on Pax5 loss in B lymphocytes.
Figure 2: T-cell reconstitution by Pax5 -deleted mature B cells in Rag2 –/– mice.
Figure 3: Immunoglobulin gene rearrangements in thymocytes of reconstituted Rag2 –/– mice.
Figure 4: Normal immune function of B-cell-derived T cells.

Similar content being viewed by others

References

  1. Weissman, I. L. Stem cells: units of development, units of regeneration, and units of evolution. Cell 100, 157–168 (2000)

    Article  CAS  Google Scholar 

  2. Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Rolink, A. G., Nutt, S. L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001)

    Article  CAS  Google Scholar 

  5. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol. 8, 463–470 (2007)

    Article  CAS  Google Scholar 

  6. Rickert, R. C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997)

    Article  CAS  Google Scholar 

  7. Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006)

    Article  CAS  Google Scholar 

  8. Holmes, M. L., Carotta, S., Corcoran, L. M. & Nutt, S. L. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 20, 933–938 (2006)

    Article  CAS  Google Scholar 

  9. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004)

    Article  CAS  Google Scholar 

  10. Sato, H., Saito-Ohara, F., Inazawa, J. & Kudo, A. Pax-5 is essential for κ sterile transcription during Igκ chain gene rearrangement. J. Immunol. 172, 4858–4865 (2004)

    Article  CAS  Google Scholar 

  11. Schwenk, F., Kühn, R., Angrand, P.-O., Rajewsky, K. & Stewart, A. F. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res. 26, 1427–1432 (1998)

    Article  CAS  Google Scholar 

  12. Sudo, T. et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl Acad. Sci. USA 90, 9125–9129 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Nutt, S. L., Morrison, A. M., Dörfler, P., Rolink, A. & Busslinger, M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998)

    Article  CAS  Google Scholar 

  14. Schaniel, C., Bruno, L., Melchers, F. & Rolink, A. G. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood 99, 472–478 (2002)

    Article  CAS  Google Scholar 

  15. Philpott, K. L. et al. Lymphoid development in mice congenitally lacking T cell receptor αβ-expressing cells. Science 256, 1448–1452 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004)

    Article  CAS  Google Scholar 

  17. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Förster, I. & Rajewsky, K. The bulk of the peripheral B-cell pool in mice is stable and not rapidly renewed from the bone marrow. Proc. Natl Acad. Sci. USA 87, 4781–4784 (1990)

    Article  ADS  Google Scholar 

  21. Rolink, A. G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol. 28, 3738–3748 (1998)

    Article  CAS  Google Scholar 

  22. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration and immune function. Immunity 27, 49–63 (2007)

    Article  CAS  Google Scholar 

  23. Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nature Rev. Immunol. 5, 230–242 (2005)

    Article  CAS  Google Scholar 

  24. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Schaniel, C., Gottar, M., Roosnek, E., Melchers, F. & Rolink, A. G. Extensive in vivo self-renewal, long-term reconstitution capacity, and hematopoietic multipotency of Pax5-deficient precursor B-cell clones. Blood 99, 2760–2766 (2002)

    Article  CAS  Google Scholar 

  26. Dalerba, P., Cho, R. W. & Clarke, M. F. Cancer stem cells: models and concepts. Annu. Rev. Med. 58, 267–284 (2007)

    Article  CAS  Google Scholar 

  27. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003)

    Article  CAS  Google Scholar 

  28. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Grigoriadis, A. E., Schellander, K., Wang, Z.-Q. & Wagner, E. F. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122, 685–701 (1993)

    Article  CAS  Google Scholar 

  30. Fleischmann, A., Jochum, W., Eferl, R., Witowsky, J. & Wagner, E. F. Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell 4, 477–482 (2003)

    Article  CAS  Google Scholar 

  31. Urbánek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994)

    Article  Google Scholar 

  32. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992)

    Article  CAS  Google Scholar 

  33. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995)

    Article  ADS  CAS  Google Scholar 

  34. Strasser, A., Harris, A. W. & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991)

    Article  CAS  Google Scholar 

  35. Schlissel, M. S., Corcoran, L. M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991)

    Article  CAS  Google Scholar 

  36. Shaw, A. C., Swat, W., Davidson, L. & Alt, F. W. Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc. Natl Acad. Sci. USA 96, 2239–2243 (1999)

    Article  ADS  CAS  Google Scholar 

  37. Wolfer, A., Wilson, A., Nemir, M., MacDonald, H. R. & Radtke, F. Inactivation of Notch1 impairs VDJβ rearrangement and allows pre-TCR-independent survival of early αβ lineage thymocytes. Immunity 16, 869–879 (2002)

    Article  CAS  Google Scholar 

  38. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004)

    Article  CAS  Google Scholar 

  39. Barch, M. J., Knutsen, T. & Spurbeck, J. L. The AGT Cytogenetic Laboratory Manual (Lippincott, Philadelphia, 1997)

    Google Scholar 

  40. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Schebesta for cDNA microarray analysis, M. Murphy and F. Alt for spectral karyotype analysis of tumour cells, F. Alt for providing immunoglobulin gene probes, A. Rolink for suggesting the Tcra–/– mouse reconstitution experiment, K. Rajewsky, J. Adams and W. Ellmeier for providing transgenic mouse strains, G. Stengl for FACS sorting, S. Höflinger for help with the V(D)J recombination analysis, and I. Botto and M. Madalinsky for anti-IL-7Rα antibody purification. This research was supported by Boehringer Ingelheim (M.B.), the Austrian Industrial Research Promotion Fund (M.B.), a Spanish ‘Ramon y Cajal’ investigator grant (C.C.), the Fondo de Investigaciónes Sanitarias (C.C.), the Junta de Castilla y León (C.C.) and the Fundación de Investigación MMA (C.C.).

Author Contributions C.C. carried out almost all experimental work and contributed to manuscript writing. W.J. performed the histological analyses and evaluation of the tumours. M.B. contributed to the project planning and wrote the manuscript.

All microarray data have been deposited in the GEO repository at NCBI under accession numbers GSM210098, GSM210099, GSM210100, GSM210101, GSM215734, GSM215735 and GSM213736.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinrad Busslinger.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-14 and Supplementary Tables 1-5 with Legends. (PDF 5817 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449, 473–477 (2007). https://doi.org/10.1038/nature06159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06159

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing