Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive coding of visual information in neural populations

Abstract

Our perception of the environment relies on the capacity of neural networks to adapt rapidly to changes in incoming stimuli1,2,3,4. It is increasingly being realized that the neural code is adaptive5, that is, sensory neurons change their responses and selectivity in a dynamic manner to match the changes in input stimuli1,2,5. Understanding how rapid exposure, or adaptation, to a stimulus of fixed structure changes information processing by cortical networks is essential for understanding the relationship between sensory coding and behaviour5,6,7,8. Physiological investigations of adaptation have contributed greatly to our understanding of how individual sensory neurons change their responses to influence stimulus coding2,9,10,11,12, yet whether and how adaptation affects information coding in neural populations is unknown. Here we examine how brief adaptation (on the timescale of visual fixation)2,9,10 influences the structure of interneuronal correlations and the accuracy of population coding in the macaque (Macaca mulatta) primary visual cortex (V1). We find that brief adaptation to a stimulus of fixed structure reorganizes the distribution of correlations across the entire network by selectively reducing their mean and variability. The post-adaptation changes in neuronal correlations are associated with specific, stimulus-dependent changes in the efficiency of the population code, and are consistent with changes in perceptual performance after adaptation2,13,14. Our results have implications beyond the predictions of current theories of sensory coding, suggesting that brief adaptation improves the accuracy of population coding to optimize neuronal performance during natural viewing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adaptation-induced response decorrelation in V1.
Figure 2: Rapid adaptation changes the structure of interneuronal correlations.
Figure 3: Rapid adaptation changes the mean and variability of correlations.
Figure 4: Rapid adaptation enhances the efficiency of population coding.

Similar content being viewed by others

References

  1. Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.) 217–234 (MIT, Cambridge, Massachusetts, 1961)

    Google Scholar 

  2. Dragoi, V., Sharma, J., Miller, E. K. & Sur, M. Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nature Neurosci. 5, 883–891 (2002)

    Article  CAS  Google Scholar 

  3. Dragoi, V., Turcu, C. M. & Sur, M. Stability of cortical responses and the statistics of natural scenes. Neuron 32, 1181–1192 (2001)

    Article  CAS  Google Scholar 

  4. Simoncelli, E. P. Vision and the statistics of the visual environment. Curr. Opin. Neurobiol. 13, 144–149 (2003)

    Article  CAS  Google Scholar 

  5. Sharpee, T. O. et al. Adaptive filtering enhances information transmission in visual cortex. Nature 439, 936–942 (2006)

    Article  CAS  ADS  Google Scholar 

  6. Schwabe, L. & Obermayer, K. Rapid adaptation and efficient coding. Biosystems 67, 239–244 (2002)

    Article  Google Scholar 

  7. Wainwright, M. J. Visual adaptation as optimal information transmission. Vision Res. 39, 3960–3974 (1999)

    Article  CAS  Google Scholar 

  8. Vinje, W. E. & Gallant, J. L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287, 1273–1276 (2000)

    Article  CAS  ADS  Google Scholar 

  9. Muller, J. R., Metha, A. B., Krauskopf, J. & Lennie, P. Rapid adaptation in visual cortex to the structure of images. Science 285, 1405–1408 (1999)

    Article  CAS  Google Scholar 

  10. Felsen, G. et al. Dynamic modification of cortical orientation tuning mediated by recurrent connections. Neuron 36, 945–954 (2002)

    Article  CAS  Google Scholar 

  11. Dragoi, V., Sharma, J. & Sur, M. Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28, 287–298 (2000)

    Article  CAS  Google Scholar 

  12. Kohn, A. & Movshon, J. A. Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39, 681–691 (2003)

    Article  CAS  Google Scholar 

  13. Clifford, C. W., Wyatt, A. M., Arnold, D. H., Smith, S. T. & Wenderoth, P. Orthogonal adaptation improves orientation discrimination. Vision Res. 41, 151–159 (2001)

    Article  CAS  Google Scholar 

  14. Regan, D. & Beverley, K. I. Postadaptation orientation discrimination. J. Opt. Soc. Am. 2, 147–155 (1985)

    Article  CAS  ADS  Google Scholar 

  15. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994)

    Article  CAS  ADS  Google Scholar 

  16. Kohn, A. & Smith, M. A. Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005)

    Article  CAS  Google Scholar 

  17. Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1999)

    Article  CAS  Google Scholar 

  18. Sompolinsky, H., Yoon, H., Kang, K. J. & Shamir, M. Population coding in neuronal systems with correlated noise. Phys. Rev. E 64, 051904 (2001)

    Article  CAS  ADS  Google Scholar 

  19. Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nature Rev. Neurosci. 1, 125–132 (2000)

    Article  CAS  Google Scholar 

  20. Reich, D. S., Mechler, F. & Victor, J. D. Independent and redundant information in nearby cortical neurons. Science 294, 2566–2568 (2001)

    Article  CAS  ADS  Google Scholar 

  21. Schneidman, E., Bialek, W. & Berry, M. J. Synergy, redundancy, and independence in population codes. J. Neurosci. 23, 11539–11553 (2003)

    Article  CAS  Google Scholar 

  22. Ts’o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986)

    Article  Google Scholar 

  23. de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K. & Reyes, A. Correlation between neural spike trains increases with firing rate Nature. 448, 802 (2007)

  24. Wilke, S. D. & Eurich, C. W. On the functional role of noise correlations in the nervous system. Neurocomputing 44–46, 1023–1028 (2002)

    Article  Google Scholar 

  25. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006)

    Article  CAS  ADS  Google Scholar 

  26. Averbeck, B. B. & Lee, D. Coding and transmission of information by neural ensembles. Trends Neurosci. 27, 225–230 (2004)

    Article  CAS  Google Scholar 

  27. Dragoi, V. & Sur, M. Image structure at the center of gaze during free viewing. J. Cogn. Neurosci. 18, 737–748 (2006)

    Article  Google Scholar 

  28. Salinas, E. & Sejnowski, T. J. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20, 6193–6209 (2000)

    Article  CAS  Google Scholar 

  29. Roelfsema, P. R., Lamme, V. A. & Spekreijse, H. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nature Neurosci. 7, 982–991 (2004)

    Article  CAS  Google Scholar 

  30. van der Togt, C., Kalitzin, S., Spekreijse, H., Lamme, V. A. & Super, H. Synchrony dynamics in monkey V1 predict success in visual detection. Cereb. Cortex 16, 136–148 (2006)

    Article  Google Scholar 

  31. Kay, S. M. Fundamentals of Statistical Signal Processing. Prentice-Hall signal-processing series (PTR Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  32. Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems 108–113 (Massachusetts Institute of Technology, Cambridge, Massachusetts, 2001)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank K. Josić for comments on the manuscript. This work was supported by the Pew Scholars Program, the James S. McDonnell Foundation and the National Eye Institute (V.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Dragoi.

Supplementary information

Supplementary Information

The file contains Supplementary Notes, Supplementary Figures 1-9 with Legends and additional references. (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutnisky, D., Dragoi, V. Adaptive coding of visual information in neural populations. Nature 452, 220–224 (2008). https://doi.org/10.1038/nature06563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06563

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing