Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Parvalbumin neurons and gamma rhythms enhance cortical circuit performance

Abstract

Synchronized oscillations and inhibitory interneurons have important and interconnected roles within cortical microcircuits. In particular, interneurons defined by the fast-spiking phenotype and expression of the calcium-binding protein parvalbumin1,2 have been suggested to be involved in gamma (30–80 Hz) oscillations3,4,5,6,7, which are hypothesized to enhance information processing8,9. However, because parvalbumin interneurons cannot be selectively controlled, definitive tests of their functional significance in gamma oscillations, and quantitative assessment of the impact of parvalbumin interneurons and gamma oscillations on cortical circuits, have been lacking despite potentially enormous significance (for example, abnormalities in parvalbumin interneurons may underlie altered gamma-frequency synchronization and cognition in schizophrenia10 and autism11). Here we use a panel of optogenetic technologies12,13,14 in mice to selectively modulate multiple distinct circuit elements in neocortex, alone or in combination. We find that inhibiting parvalbumin interneurons suppresses gamma oscillations in vivo, whereas driving these interneurons (even by means of non-rhythmic principal cell activity) is sufficient to generate emergent gamma-frequency rhythmicity. Moreover, gamma-frequency modulation of excitatory input in turn was found to enhance signal transmission in neocortex by reducing circuit noise and amplifying circuit signals, including inputs to parvalbumin interneurons. As demonstrated here, optogenetics opens the door to a new kind of informational analysis of brain function, permitting quantitative delineation of the functional significance of individual elements in the emergent operation and function of intact neural circuitry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibiting PV cells suppresses gamma oscillations in vivo.
Figure 2: Feedback inhibition from PV cells generates emergent gamma frequency synchrony.
Figure 3: Gamma oscillations amplify signals and reduce noise in PY cells.
Figure 4: Gamma oscillations enhance information flow from PY to PV cells.

Similar content being viewed by others

References

  1. Kawaguchi, Y. & Kubota, Y. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85, 677–701 (1998)

    Article  CAS  Google Scholar 

  2. Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004)

    Article  Google Scholar 

  3. Freund, T. F. Interneuron diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003)

    Article  CAS  Google Scholar 

  4. Whittington, M. A., Traub, R. D. & Jefferys, J. G. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373, 612–615 (1995)

    Article  CAS  Google Scholar 

  5. Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995)

    Article  CAS  Google Scholar 

  6. Tamas, G., Buhl, E. H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nature Neurosci. 3, 366–371 (2000)

    Article  CAS  Google Scholar 

  7. Fuchs, E. C. et al. Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53, 591–604 (2007)

    Article  CAS  Google Scholar 

  8. Konig, P., Engel, A. K. & Singer, W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci. 19, 130–137 (1996)

    Article  CAS  Google Scholar 

  9. Womelsdorf, T. et al. Modulation of neuronal interactions through neuronal synchronization. Science 316, 1609–1612 (2007)

    Article  CAS  Google Scholar 

  10. Lewis, D. A., Hashimoto, T. & Volk, D. W. Cortical inhibitory neurons and schizophrenia. Nature Rev. Neurosci. 6, 312–324 (2005)

    Article  CAS  Google Scholar 

  11. Orekhova, E. V. et al. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol. Psychiatry 62, 1022–1029 (2007)

    Article  Google Scholar 

  12. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005)

    Article  CAS  Google Scholar 

  13. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007)

    Article  CAS  Google Scholar 

  14. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007)

    Article  Google Scholar 

  15. Meyer, A. H., Katona, I., Blatow, M., Rozov, A. & Monyer, H. In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J. Neurosci. 22, 7055–7064 (2002)

    Article  CAS  Google Scholar 

  16. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007)

    Article  CAS  Google Scholar 

  17. Conde, F., Lund, J. S. & Lewis, D. A. The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Brain Res. 96, 261–276 (1996)

    Article  CAS  Google Scholar 

  18. Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001)

    Article  CAS  Google Scholar 

  19. Howard, M. W. et al. Gamma oscillations correlate with working memory load in humans. Cereb. Cortex 13, 1369–1374 (2003)

    Article  Google Scholar 

  20. de Ruyter van Steveninck, R. R., Lewen, G. D., Strong, S. P., Koberle, R. & Bialek, W. Reproducibility and variability in neural spike trains. Science 275, 1805–1808 (1997)

    Article  CAS  Google Scholar 

  21. Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007)

    Article  CAS  Google Scholar 

  22. Wang, H. et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl Acad. Sci. USA 104, 8143–8148 (2007)

    Article  CAS  Google Scholar 

  23. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo . J. Neurosci. 27, 14231 (2007)

    Article  CAS  Google Scholar 

  24. Bannister, A. P. Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci. Res. 53, 95–103 (2005)

    Article  Google Scholar 

  25. Sanchez-Vives, M. V. & McCormick, D. A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neurosci. 3, 1027–1034 (2000)

    Article  CAS  Google Scholar 

  26. Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G. & Harris, K. D. Sequential structure of neocortical spontaneous activity in vivo . Proc. Natl Acad. Sci. USA 104, 347–352 (2007)

    Article  CAS  Google Scholar 

  27. Baccus, S. A. & Meister, M. Fast and slow contrast adaptation in retinal circuitry. Neuron 36, 909–919 (2002)

    Article  CAS  Google Scholar 

  28. Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006)

    Article  CAS  Google Scholar 

  29. Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001)

    Article  CAS  Google Scholar 

  30. Rodriguez, E. et al. Perception's shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Arber for her gift of the PV::Cre mice, and we acknowledge the advice and suggestions of R. C. Malenka, J. Huguenard and S. Baccus on this work. All materials are freely distributed and supported by the Deisseroth laboratory (http://www.optogenetics.org). K.D. is supported by the President and Provost of Stanford University, BioX, Bioengineering, and by NIMH, NIDA, CIRM, NSF, and the Keck, McKnight and Coulter Foundations. F.Z. is supported by NINDS, and V.S.S. is supported by a T32 postdoctoral research training fellowship from NIMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Deisseroth.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References, Supplementary Tables 1-2 and Supplementary Figures 1-8 with Legends. (PDF 4122 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohal, V., Zhang, F., Yizhar, O. et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009). https://doi.org/10.1038/nature07991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07991

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing