Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells

Abstract

The classical view of neural plate development held that it arises from the ectoderm, after its separation from the mesodermal and endodermal lineages. However, recent cell-lineage-tracing experiments indicate that the caudal neural plate and paraxial mesoderm are generated from common bipotential axial stem cells originating from the caudal lateral epiblast1,2. Tbx6 null mutant mouse embryos which produce ectopic neural tubes at the expense of paraxial mesoderm3 must provide a clue to the regulatory mechanism underlying this neural versus mesodermal fate choice. Here we demonstrate that Tbx6-dependent regulation of Sox2 determines the fate of axial stem cells. In wild-type embryos, enhancer N1 of the neural primordial gene Sox2 is activated in the caudal lateral epiblast, and the cells staying in the superficial layer sustain N1 activity and activate Sox2 expression in the neural plate4,5,6. In contrast, the cells destined to become mesoderm activate Tbx6 and turn off enhancer N1 before migrating into the paraxial mesoderm compartment. In Tbx6 mutant embryos, however, enhancer N1 activity persists in the paraxial mesoderm compartment, eliciting ectopic Sox2 activation and transforming the paraxial mesoderm into neural tubes. An enhancer-N1-specific deletion mutation introduced into Tbx6 mutant embryos prevented this Sox2 activation in the mesodermal compartment and subsequent development of ectopic neural tubes, indicating that Tbx6 regulates Sox2 via enhancer N1. Tbx6-dependent repression of Wnt3a in the paraxial mesodermal compartment is implicated in this regulatory process. Paraxial mesoderm-specific misexpression of a Sox2 transgene in wild-type embryos resulted in ectopic neural tube development. Thus, Tbx6 represses Sox2 by inactivating enhancer N1 to inhibit neural development, and this is an essential step for the specification of paraxial mesoderm from the axial stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhancer N1 of the mouse Sox2 gene and its activity in comparison with Sox2 and Tbx6 expression.
Figure 2: Ectopic activation of enhancer N1, Sox2 expression and neural development in the paraxial mesoderm compartment of Tbx6 −/− embryos.
Figure 3: Enhancer-N1-dependent paraxial Sox2 expression and ectopic neural tube development in Tbx6 −/− embryos, and their suppression in Tbx6 −/−  ΔN1/ΔN1 double mutants.
Figure 4: Development of ectopic neural tubes from the wild-type paraxial mesoderm by misexpression of exogenous Sox2.

Similar content being viewed by others

References

  1. Diez del Corral, R. & Storey, K. Opposing FGF and retinoid pathways: a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 26, 857–869 (2004)

    Article  PubMed  Google Scholar 

  2. Wilson, V., Olivera-Martinez, I. & Storey, K. Stem cells, signals and vertebrate body axis extension. Development 136, 1591–1604 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. Chapman, D. & Papaioannou, V. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6 . Nature 391, 695–697 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Takemoto, T., Uchikawa, M., Kamachi, Y. & Kondoh, H. Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development 133, 297–306 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. & Kondoh, H. Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell 4, 509–519 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Kamachi, Y. et al. Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes. Proc. Jpn. Acad. Ser. B 85, 55–68 (2009)

    Article  CAS  Google Scholar 

  7. Selleck, M. & Stern, C. Fate mapping and cell lineage analysis of Hensen’s node in the chick embryo. Development 112, 615–626 (1991)

    CAS  PubMed  Google Scholar 

  8. Tzouanacou, E., Wegener, A., Wymeersch, F., Wilson, V. & Nicolas, J. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev. Cell 17, 365–376 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. Brown, J. & Storey, K. A region of the vertebrate neural plate in which neighbouring cells can adopt neural or epidermal fates. Curr. Biol. 10, 869–872 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Cambray, N. & Wilson, V. Two distinct sources for a population of maturing axial progenitors. Development 134, 2829–2840 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Mathis, L., Kulesa, P. & Fraser, S. FGF receptor signalling is required to maintain neural progenitors during Hensen’s node progression. Nature Cell Biol. 3, 559–566 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Delfino-Machín, M., Lunn, J., Breitkreuz, D., Akai, J. & Storey, K. Specification and maintenance of the spinal cord stem zone. Development 132, 4273–4283 (2005)

    Article  PubMed  Google Scholar 

  13. Chapman, D., Agulnik, I., Hancock, S., Silver, L. & Papaioannou, V. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol. 180, 534–542 (1996)

    Article  CAS  PubMed  Google Scholar 

  14. Yasuhiko, Y. et al. Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2 . Development 135, 3511–3519 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Yasuhiko, Y. et al. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl Acad. Sci. USA 103, 3651–3656 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Hofmann, M. et al. WNT signaling, in synergy with T/TBX6, controls Notch signaling by regulating Dll1 expression in the presomitic mesoderm of mouse embryos. Genes Dev. 18, 2712–2717 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. White, P. & Chapman, D. Dll1 is a downstream target of Tbx6 in the paraxial mesoderm. Genesis 42, 193–202 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. Beckers, J. et al. Distinct regulatory elements direct delta1 expression in the nervous system and paraxial mesoderm of transgenic mice. Mech. Dev. 95, 23–34 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Bouillet, P. et al. A new mouse member of the Wnt gene family, mWnt-8, is expressed during early embryogenesis and is ectopically induced by retinoic acid. Mech. Dev. 58, 141–152 (1996)

    Article  CAS  PubMed  Google Scholar 

  20. Yamaguchi, T. Genetics of Wnt signaling during early mammalian development. Methods Mol. Biol. 468, 287–305 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Sun, X., Meyers, E., Lewandoski, M. & Martin, G. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834–1846 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994)

    Article  CAS  PubMed  Google Scholar 

  23. Trichas, G., Begbie, J. & Srinivas, S. Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol. 6, 40 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tonegawa, A. & Takahashi, Y. Somitogenesis controlled by Noggin. Dev. Biol. 202, 172–182 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. Dosch, R., Gawantka, V., Delius, H., Blumenstock, C. & Niehrs, C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus . Development 124, 2325–2334 (1997)

    CAS  PubMed  Google Scholar 

  26. Wilkinson, D. G. In situ hybridization: a practical approach (IRL at Oxford Univ. Press, 1992)

    Google Scholar 

  27. Xu, P. et al. Regulation of Pax6 expression is conserved between mice and flies. Development 126, 383–395 (1999)

    CAS  PubMed  Google Scholar 

  28. Mansouri, A. et al. Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev. Dyn. 210, 53–65 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Sawada, A. et al. Redundant roles of Tead1 and Tead2 in notochord development and the regulation of cell proliferation and survival. Mol. Cell. Biol. 28, 3177–3189 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dressler, G., Deutsch, U., Chowdhury, K., Nornes, H. & Gruss, P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795 (1990)

    CAS  PubMed  Google Scholar 

  31. Sasaki, H. & Hogan, B. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47–59 (1993)

    CAS  PubMed  Google Scholar 

  32. Kimura-Yoshida, C. et al. Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev. Cell 9, 639–650 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. Crossley, P. & Martin, G. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995)

    CAS  PubMed  Google Scholar 

  34. Niswander, L. & Martin, G. Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–768 (1992)

    CAS  PubMed  Google Scholar 

  35. Roelink, H. & Nusse, R. Expression of two members of the Wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 5, 381–388 (1991)

    Article  CAS  PubMed  Google Scholar 

  36. Nagy, A., Gertsenstein, M., Vinterten, K. & Behringer, R. Manipulating the Mouse Embryo: a Laboratory Manual 3rd edn (Cold Spring Harbor Laboratory Press, 2003)

    Google Scholar 

  37. Yamamoto, M. et al. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428, 387–392 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Katoh, K., Takahashi, Y., Hayashi, S. & Kondoh, H. Improved mammalian vectors for high expression of G418 resistance. Cell Struct. Funct. 12, 575–580 (1987)

    Article  CAS  PubMed  Google Scholar 

  39. Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem. 214, 77–86 (1993)

    Article  CAS  PubMed  Google Scholar 

  40. Sakai, K. & Miyazaki, J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997)

    Article  CAS  PubMed  Google Scholar 

  41. Kamachi, Y. & Kondoh, H. Overlapping positive and negative regulatory elements determine lens-specific activity of the delta 1-crystallin enhancer. Mol. Cell. Biol. 13, 5206–5215 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kispert, A. & Hermann, B. The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12, 4898–4899 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conlon, F., Fairclough, L., Price, B., Casey, E. & Smith, J. Determinants of T box protein specificity. Development 128, 3749–3758 (2001)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of Kondoh laboratory for discussions. This study was supported by Grants-in-Aid for Scientific Research from MEXT Japan to T.T. and H.K., an NIH grant to V.E.P., and MRC funding to R.L.-B.

Author information

Authors and Affiliations

Authors

Contributions

T.T. and H.K. conceived the project; T.T. carried out major experiments; T.T. and H.K. analysed data; M.U. and M.Y. aided production and analysis of enhancer N1 mutant mice; V.E.P. provided Tbx6 mutant mice; D.M.B., R.L.-B. and V.E.P. first indicated Sox2 disregulation in the Tbx6 mutant mice; and T.T. and H.K. wrote the manuscript.

Corresponding author

Correspondence to Hisato Kondoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-7 with legends. (PDF 23976 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemoto, T., Uchikawa, M., Yoshida, M. et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470, 394–398 (2011). https://doi.org/10.1038/nature09729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09729

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing