Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA

Abstract

Maintenance of telomeres requires both DNA replication and telomere ‘capping’ by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres1,2, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres3. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A novel telomere-specific RPA displacing activity in human cell extracts.
Figure 2: RPA displacement by hnRNPA1.
Figure 3: Regulation of RPA displacement by TERRA.
Figure 4: hnRNPA1 and POT1 suppress the accumulation of RPA at telomeres.

Similar content being viewed by others

References

  1. Guo, X. et al. Dysfunctional telomeres activate an ATM-ATR-dependent DNA damage response to suppress tumorigenesis. EMBO J. 26, 4709–4719 (2007)

    Article  CAS  Google Scholar 

  2. Denchi, E. L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Porro, A., Feuerhahn, S., Reichenbach, P. & Lingner, J. Molecular dissection of TERRA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol. Cell Biol. 30, 4808–4817 (2010)

    Article  CAS  Google Scholar 

  4. Wold, M. S. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66, 61–92 (1997)

    Article  CAS  Google Scholar 

  5. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Verdun, R. E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006)

    Article  CAS  Google Scholar 

  8. Moser, B. A. et al. Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J. 28, 810–820 (2009)

    Article  CAS  Google Scholar 

  9. McGee, J. S. et al. Reduced Rif2 and lack of Mec1 target short telomeres for elongation rather than double-strand break repair. Nature Struct. Mol. Biol. 17, 1438–1445 (2010)

    Article  CAS  Google Scholar 

  10. Verdun, R. E., Crabbe, L., Haggblom, C. & Karlseder, J. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol. Cell 20, 551–561 (2005)

    Article  CAS  Google Scholar 

  11. Kibe, T., Ono, Y., Sato, K. & Ueno, M. Fission yeast Taz1 and RPA are synergistically required to prevent rapid telomere loss. Mol. Biol. Cell 18, 2378–2387 (2007)

    Article  CAS  Google Scholar 

  12. Schramke, V. et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nature Genet. 36, 46–54 (2004)

    Article  CAS  Google Scholar 

  13. McNees, C. J. et al. ATR suppresses telomere fragility and recombination but is dispensable for elongation of short telomeres by telomerase. J. Cell Biol. 188, 639–652 (2010)

    Article  CAS  Google Scholar 

  14. Shiotani, B. & Zou, L. Single-stranded DNA orchestrates an ATM-to-ATR switch at DNA breaks. Mol. Cell 33, 547–558 (2009)

    Article  CAS  Google Scholar 

  15. Wang, F. et al. The POT1–TPP1 telomere complex is a telomerase processivity factor. Nature 445, 506–510 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Xin, H. et al. TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445, 559–562 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R. & de Lange, T. In vivo stoichiometry of shelterin components. J. Biol. Chem. 285, 1457–1467 (2010)

    Article  CAS  Google Scholar 

  18. Ishikawa, F., Matunis, M. J., Dreyfuss, G. & Cech, T. R. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell. Biol. 13, 4301–4310 (1993)

    Article  CAS  Google Scholar 

  19. McKay, S. J. & Cooke, H. hnRNP A2/B1 binds specifically to single stranded vertebrate telomeric repeat TTAGGGn. Nucleic Acids Res. 20, 6461–6464 (1992)

    Article  CAS  Google Scholar 

  20. LaBranche, H. et al. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nature Genet. 19, 199–202 (1998)

    Article  CAS  Google Scholar 

  21. Zhang, Q. S., Manche, L., Xu, R. M. & Krainer, A. R. hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 12, 1116–1128 (2006)

    Article  CAS  Google Scholar 

  22. Ding, J. et al. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev. 13, 1102–1115 (1999)

    Article  CAS  Google Scholar 

  23. Deng, Z., Norseen, J., Wiedmer, A., Riethman, H. & Lieberman, P. M. TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruitment at telomeres. Mol. Cell 35, 403–413 (2009)

    Article  CAS  Google Scholar 

  24. de Silanes, I. L., d’Alcontres, M. S. & Blasco, M. A. TERRA transcripts are bound by a complex array of RNA-binding proteins. Nature Commun. 1, 1–9 (2010)

    Article  Google Scholar 

  25. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E. & Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798–801 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Redon, S., Reichenbach, P. & Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 38, 5797–5806 (2010)

    Article  CAS  Google Scholar 

  27. Gong, Y. & de Lange, T. A. Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol. Cell 40, 377–387 (2010)

    Article  CAS  Google Scholar 

  28. Lei, M., Podell, E. R. & Cech, T. R. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nature Struct. Mol. Biol. 11, 1223–1229 (2004)

    Article  CAS  Google Scholar 

  29. Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176–181 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Henricksen, L. A. & Wold, M. S. Replication protein A mutants lacking phosphorylation sites for p34cdc2 kinase support DNA replication. J. Biol. Chem. 269, 24203–24208 (1994)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. de Lange, A. Krainer, B. Chabot and M. Wold for reagents, and members of the Zou laboratory for discussion. L.Z. is an Ellison New Scholar on Aging. R.L.F. is supported by National Institutes of Health (NIH) fellowship 5T32CA009216-28 and American Cancer Society fellowship 0902501. R.C.C. is supported by NIH fellowship F32-GM089150. R.J.O. is supported by the George E. Hewitt Foundation for Medical Research. This work is supported by a Welch Foundation grant (Q-1673) to Z.S., an ACS grant (RSG-08-297) to L.Z., and NIH grants CA133249 to Z.S., CA129037 to S.C., GM06525 and AG025837 to J.K. and GM076388 to L.Z.

Author information

Authors and Affiliations

Authors

Contributions

R.L.F. and L.Z. conceived the project. R.L.F., R.C.C., R.J.O., R.R., A.T. and L.Z. performed the experiments. Z.S. contributed the POT1–TPP1 complex purified from insect cells. R.R. and S.C. performed the combined RNA-fluorescence in situ hybridization and immunostaining analysis. R.J.O. and J.K. performed the RPA chromatin immunoprecipitation and northern blot. R.L.F. and L.Z. wrote the paper.

Corresponding author

Correspondence to Lee Zou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-10 with legends. (PDF 870 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, R., Centore, R., O’Sullivan, R. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011). https://doi.org/10.1038/nature09772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09772

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing