Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrasensitive fluorescent proteins for imaging neuronal activity

Abstract

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GCaMP mutagenesis and screening in dissociated neurons.
Figure 2: GCaMP6 performance in the mouse visual cortex.
Figure 3: Combined imaging and electrophysiology in the visual cortex.
Figure 4: Imaging activity in dendritic spines in the visual cortex.
Figure 5: The orientation preference of populations of dendritic spines predicts the orientation preference of their parent neuron.
Figure 6: Orientation-tuned domains in dendrites of GABAergic interneurons.

References

  1. Baker, P. F., Hodgkin, A. L. & Ridgway, E. B. Depolarization and calcium entry in squid giant axons. J. Physiol. (Lond.) 218, 709–755 (1971)

    Article  CAS  PubMed Central  Google Scholar 

  2. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Tank, D. W., Sugimori, M., Connor, J. A. & Llinas, R. R. Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242, 773–777 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Sabatini, B. L., Oertner, T. G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Huber, D. et al. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484, 473–478 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y. et al. Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J. Neurosci. 24, 6507–6514 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zariwala, H. A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mao, T., O’Connor, D. H., Scheuss, V., Nakai, J. & Svoboda, K. Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3, e1796 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dreosti, E., Odermatt, B., Dorostkar, M. M. & Lagnado, L. A genetically encoded reporter of synaptic activity in vivo. Nature Methods 6, 883–889 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guerrero, G. et al. Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nature Neurosci. 8, 1188–1196 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001)

    Article  CAS  Google Scholar 

  18. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nature Methods (2008). 5, 805–811

    Article  CAS  PubMed  Google Scholar 

  19. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl Acad. Sci. USA 101, 10554–10559 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Palmer, A. E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nature Methods 7, 729–732 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. Pologruto, T. A., Yasuda, R. & Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572–9579 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reiff, D. F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. Biophys. Biomol. Struct. 24, 85–116 (1995)

    Article  CAS  PubMed  Google Scholar 

  27. Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 6455–6464 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bayley, P. M., Findlay, W. A. & Martin, S. R. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences. Protein Sci. 5, 1215–1228 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)

    Article  CAS  Google Scholar 

  30. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Mainen, Z. F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Chen, X., Leischner, U., Rochefort, N. L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011)

    Article  CAS  PubMed  Google Scholar 

  34. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 473, 87–91 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hansel, D. & van Vreeswijk, C. The mechanism of orientation selectivity in primary visual cortex without a functional map. J. Neurosci. 32, 4049–4064 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, B. H. et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71, 542–554 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tan, A. Y., Brown, B. D., Scholl, B., Mohanty, D. & Priebe, N. J. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. J. Neurosci. 31, 12339–12350 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca2+] signaling in individual hippocampal dendritic spines. J. Neurosci. 25, 6037–6046 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sohya, K., Kameyama, K., Yanagawa, Y., Obata, K. & Tsumoto, T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci. 27, 2145–2149 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bock, D. D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hofer, S. B. et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nature Neurosci. 14, 1045–1052 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Goldberg, J. H., Tamas, G. & Yuste, R. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation. J. Physiol. (Lond.) 551, 49–65 (2003)

    Article  CAS  Google Scholar 

  45. Gulyás, A. I., Megías, M., Emri, Z. & Freund, T. F. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J. Neurosci. 19, 10082–10097 (1999)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Goldberg, J. H., Tamas, G., Aronov, D. & Yuste, R. Calcium microdomains in aspiny dendrites. Neuron 40, 807–821 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. Katona, G. et al. Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons. Proc. Natl Acad. Sci. USA 108, 2148–2153 (2011)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009)

    Article  ADS  PubMed  Google Scholar 

  51. Wang, Q., Shui, B., Kotlikoff, M. I. & Sondermann, H. Structural basis for calcium sensing by GCaMP2. Structure 16, 1817–1827 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hanawa, H. et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood 103, 4062–4069 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods 6, 343–345 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. Stewart, S. A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kralj, J. M., Douglass, A. D., Hochbaum, D. R., Maclaurin, D. & Cohen, A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods 9, 90–95 (2012)

    Article  CAS  Google Scholar 

  56. Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. Front. Neural Circuits 4, 100 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  57. Xu, N. L. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997)

    Article  CAS  PubMed  Google Scholar 

  60. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997)

    Article  CAS  PubMed  Google Scholar 

  61. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: Flexible software for operating laser-scanning microscopes. Biomed. Eng. Online 2, 13 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998)

    Article  ADS  PubMed  Google Scholar 

  63. Bandyopadhyay, S., Shamma, S. A. & Kanold, P. O. Dichotomy of functional organization in the mouse auditory cortex. Nature Neurosci. 13, 361–368 (2010)

    Article  CAS  PubMed  Google Scholar 

  64. Longair, M. H., Baker, D. A. & Armstrong, J. D. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27, 2453–2454 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.J., R.A.K., L.L.L. and K.S. initiated the project. T.-W.C., T.J.W. and D.S.K. conducted neuronal culture screening. T.-W.C. performed mouse visual cortical experiments on pyramidal neurons. T.-W.C. and A.B. performed experiments on inhibitory neurons. Y.S., T.J.W. and S.R.P. carried out fly larval neuromuscular junction studies. Y.S. and V.J. carried out adult fly antennal lobe imaging. S.L.R. and M.B.O. conducted zebrafish tectal imaging. E.R.S. performed protein assays. All authors analysed data. T.-W.C., R.A.K., M.B.O., V.J., L.L.L., K.S. and D.S.K. wrote the paper with comments from all authors.

Corresponding authors

Correspondence to Michael B. Orger, Vivek Jayaraman, Loren L. Looger, Karel Svoboda or Douglas S. Kim.

Ethics declarations

Competing interests

The authors have applied for a patent on materials and methods related to the GCaMP6 variants.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7370 kb)

Simultaneous recording of spikes and GCaMP6s fluorescence signal of a L2/3 neuron in the visual cortex in vivo

This video shows simultaneous recording of spikes and GCaMP6s fluorescence signal of a L2/3 neuron in the visual cortex in vivo. The soundtrack of the video encodes the recorded spikes. (MP4 12818 kb)

Calcium imaging of dendritic spines of GCaMP6s-expressing V1 neurons in response to drifting grating stimulation

This video shows 320 s of continuous calcium imaging of dendritic spines of GCaMP6s-expressing V1 neurons in response to drifting grating stimulation (2 s duration, 0.05 cycles per degree, 1 Hz temporal frequency). The direction of grating movement is indicated by the arrow in the upper right. (MP4 19513 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, TW., Wardill, T., Sun, Y. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). https://doi.org/10.1038/nature12354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12354

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing