Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

STIMulating store-operated Ca2+ entry

Abstract

Calcium influx through plasma membrane store-operated Ca2+ (SOC) channels is triggered when the endoplasmic reticulum (ER) Ca2+ store is depleted — a homeostatic Ca2+ signalling mechanism that remained enigmatic for more than two decades. RNA-interference (RNAi) screening and molecular and cellular physiological analysis recently identified STIM1 as the mechanistic 'missing link' between the ER and the plasma membrane. STIM proteins sense the depletion of Ca2+ from the ER, oligomerize, translocate to junctions adjacent to the plasma membrane, organize Orai or TRPC (transient receptor potential cation) channels into clusters and open these channels to bring about SOC entry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domains of STIM proteins.
Figure 2: STIM Ca2+ sensor, signal initiation and messenger functions.
Figure 3: STIM-mediated organization of the elementary unit and activation of Orai channels.

Similar content being viewed by others

References

  1. Parekh, A. B. & Putney, J. W. Jr Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    CAS  PubMed  Google Scholar 

  3. Lewis, R. S. & Cahalan, M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1, 99–112 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zweifach, A. & Lewis, R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl Acad. Sci. USA 90, 6295–6299 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oritani, K. & Kincade, P. W. Identification of stromal cell products that interact with pre-B cells. J. Cell Biol. 134, 771–782 (1996).

    CAS  PubMed  Google Scholar 

  6. Williams, R. T. et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem. J. 357, 673–685 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cai, X. Molecular evolution and functional divergence of the Ca2+ sensor protein in store-operated Ca2+ entry: stromal interaction molecule. PLoS ONE 2, e609 (2007).

    PubMed  PubMed Central  Google Scholar 

  8. Parker, N. J., Begley, C. G., Smith, P. J. & Fox, R. M. Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 37, 253–256 (1996).

    CAS  PubMed  Google Scholar 

  9. Sabbioni, S., Barbanti-Brodano, G., Croce, C. M. & Negrini, M. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res. 57, 4493–4497 (1997).

    CAS  PubMed  Google Scholar 

  10. Manji, S. S. et al. STIM1: a novel phosphoprotein located at the cell surface. Biochim. Biophys. Acta 1481, 147–155 (2000).

    CAS  PubMed  Google Scholar 

  11. Williams, R. T. et al. Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by Nli-nked glycosylation. Biochim. Biophys. Acta 1596, 131–137 (2002).

    CAS  PubMed  Google Scholar 

  12. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yeromin, A. V., Roos, J., Stauderman, K. A. & Cahalan, M. D. A store-operated calcium channel in Drosophila S2 cells. J. Gen. Physiol. 123, 167–182 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Soboloff, J. et al. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ Entry. Curr. Biol. 16, 1465–1470 (2006).

    CAS  PubMed  Google Scholar 

  16. Brandman, O., Liou, J., Park, W. S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131, 1327–1339 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    CAS  PubMed  Google Scholar 

  18. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    CAS  PubMed  Google Scholar 

  21. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nature Cell Biol. 8, 771–773 (2006).

    CAS  PubMed  Google Scholar 

  22. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006).

    CAS  PubMed  Google Scholar 

  23. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    CAS  PubMed  Google Scholar 

  24. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Stathopulos, P. B., Li, G. Y., Plevin, M. J., Ames, J. B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: An initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006).

    CAS  PubMed  Google Scholar 

  28. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 103, 16704–16709 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dziadek, M. A. & Johnstone, L. S. Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42, 123–132 (2007).

    CAS  PubMed  Google Scholar 

  30. Penna, A. et al. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456, 116–120 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ji, W. et al. Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc. Natl Acad. Sci. USA 105, 13668–13673 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA 104, 9301–9306 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Muik, M. et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283, 8014–8022 (2008).

    CAS  PubMed  Google Scholar 

  34. Stathopulos, P. B., Zheng, L. & Ikura, M. Stromal Interaction Molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J. Biol. Chem. 284, 728–732 (2009).

    CAS  PubMed  Google Scholar 

  35. Stathopulos, P. B., Zheng, L., Li, G. Y., Plevin, M. J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    CAS  PubMed  Google Scholar 

  36. Luik, R. M., Wang, B., Prakriya, M., Wu, M. M. & Lewis, R. S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smyth, J. T., Dehaven, W. I., Bird, G. S. & Putney, J. W. Jr Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J. Cell Sci. 121, 762–772 (2008).

    CAS  PubMed  Google Scholar 

  39. Varnai, P., Toth, B., Toth, D. J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J. Biol. Chem. 282, 29678–29690 (2007).

    CAS  PubMed  Google Scholar 

  40. Tamarina, N. A., Kuznetsov, A. & Philipson, L. H. Reversible translocation of EYFP-tagged STIM1 is coupled to calcium influx in insulin secreting β-cells. Cell Calcium 44, 533–544 (2008).

    CAS  PubMed  Google Scholar 

  41. Malli, R., Naghdi, S., Romanin, C. & Graier, W. F. Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J. Cell Sci. 121, 3133–3139 (2008).

    CAS  PubMed  Google Scholar 

  42. Calloway, N., Vig, M., Kinet, J. P., Holowka, D. & Baird, B. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol. Biol. Cell 20, 389–399 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Grigoriev, I. et al. STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Smyth, J. T., DeHaven, W. I., Bird, G. S. & Putney, J. W. Jr Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J. Cell Sci. 120, 3762–3771 (2007).

    CAS  PubMed  Google Scholar 

  45. Alicia, S., Angelica, Z., Carlos, S., Alfonso, S. & Vaca, L. STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: Moving TRPC1 in and out of lipid rafts. Cell Calcium 44, 479–491 (2008).

    CAS  PubMed  Google Scholar 

  46. Pani, B. et al. Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J. Biol. Chem. 283, 17333–17340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Oka, T., Hori, M. & Ozaki, H. Microtubule disruption suppresses allergic response through the inhibition of calcium influx in the mast cell degranulation pathway. J. Immunol. 174, 4584–4589 (2005).

    CAS  PubMed  Google Scholar 

  48. Bakowski, D., Glitsch, M. D. & Parekh, A. B. An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. J. Physiol. 532, 55–71 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006).

    CAS  Google Scholar 

  51. Lioudyno, M. I. et al. Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation. Proc. Natl Acad. Sci. USA 105, 2011–2016 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barr, V. A. et al. Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps. Mol. Biol. Cell 19, 2802–2817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lis, A. et al. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 17, 794–800 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. DeHaven, W. I., Smyth, J. T., Boyles, R. R. & Putney, J. W. Jr Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J. Biol. Chem. 282, 17548–17556 (2007).

    CAS  PubMed  Google Scholar 

  55. Navarro-Borelly, L. et al. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J. Physiol. 586, 5383–5401 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, G. N. et al. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006).

    CAS  PubMed  Google Scholar 

  57. Yuan, J. P., Zeng, W., Huang, G. N., Worley, P. F. & Muallem, S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nature Cell Biol. 9, 636–645 (2007).

    CAS  PubMed  Google Scholar 

  58. Zhang, S. L. et al. Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3. J. Biol. Chem. 283, 17662–17671 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Muik, M. et al. A cytosolic homomerization and a modulatory domain within STIM1 C-terminus determine coupling to ORAI1 channels. J. Biol. Chem. 284, 8421–8426 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Park, C. Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuan, J. P. et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nature Cell Biol. 11, 337–343 (2009).

    CAS  PubMed  Google Scholar 

  62. Zweifach, A. & Lewis, R. S. Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J. Gen. Physiol. 105, 209–226 (1995).

    CAS  PubMed  Google Scholar 

  63. Gwack, Y. et al. Biochemical and functional characterization of Orai proteins. J. Biol. Chem. 282, 16232–16243 (2007).

    CAS  PubMed  Google Scholar 

  64. Mignen, O., Thompson, J. L. & Shuttleworth, T. J. Orai1 subunit stoichiometry of the mammalian CRAC channel pore. J. Physiol. 586, 419–425 (2008).

    CAS  PubMed  Google Scholar 

  65. Cheng, K. T., Liu, X., Ong, H. L. & Ambudkar, I. S. Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J. Biol. Chem. 283, 12935–12940 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jardin, I., Lopez, J. J., Salido, G. M. & Rosado, J. A. Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels. J. Biol. Chem. 283, 25296–25304 (2008).

    CAS  PubMed  Google Scholar 

  67. Kim, M. S. et al. Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J. Biol. Chem. 284, 9733–9741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liao, Y. et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc. Natl Acad. Sci. USA 105, 2895–2900 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma, H. T. et al. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J. Immunol. 180, 2233–2239 (2008).

    CAS  PubMed  Google Scholar 

  70. Ong, H. L. et al. Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J. Biol. Chem. 282, 9105–9116 (2007).

    CAS  PubMed  Google Scholar 

  71. Zeng, W. et al. STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol. Cell 32, 439–448 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Liao, Y. et al. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc. Natl Acad. Sci. USA 104, 4682–4687 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Liao, Y. et al. A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc. Natl Acad. Sci. USA 106, 3202–3206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bolotina, V. M. Orai, STIM1 and iPLA2β: a view from a different perspective. J. Physiol. 586, 3035–3042 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Csutora, P. et al. Novel Role for STIM1 as a Trigger for Calcium Influx Factor Production. J. Biol. Chem. 283, 14524–14531 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Randriamampita, C. & Tsien, R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 364, 809–814 (1993).

    CAS  PubMed  Google Scholar 

  77. Redondo, P. C., Jardin, I., Lopez, J. J., Salido, G. M. & Rosado, J. A. Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP(3) receptor and SERCA3 in human platelets. Biochim. Biophys. Acta 1783, 1163–1176 (2008).

    CAS  PubMed  Google Scholar 

  78. Cahalan, M. D. et al. Molecular basis of the CRAC channel. Cell Calcium 42, 133–144 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Oh-hora, M. & Rao, A. Calcium signaling in lymphocytes. Curr. Opin. Immunol. 20, 250–258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Varga-Szabo, D. et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J. Exp. Med. 205, 1583–1591 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sabbioni, S. et al. Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD. Cytogenet. Cell Genet. 86, 214–218 (1999).

    CAS  PubMed  Google Scholar 

  82. Hewavitharana, T. et al. Location and function of STIM1 in the activation of Ca2+ entry signals. J. Biol. Chem. 283, 26252–26262 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lopez, J. J., Salido, G. M., Pariente, J. A. & Rosado, J. A. Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J. Biol. Chem. 281, 28254–28264 (2006).

    CAS  PubMed  Google Scholar 

  84. Hauser, C. T. & Tsien, R. Y. A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure. Proc. Natl Acad. Sci. USA 104, 3693–3697 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mignen, O., Thompson, J. L. & Shuttleworth, T. J. STIM1 regulates Ca2+ entry via arachidonate-regulated Ca2+-selective (ARC) channels without store depletion or translocation to the plasma membrane. J. Physiol. 579, 703–715 (2007).

    CAS  PubMed  Google Scholar 

  86. Mignen, O., Thompson, J. L. & Shuttleworth, T. J. Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J. Physiol. 586, 185–195 (2008).

    CAS  PubMed  Google Scholar 

  87. Baba, Y. et al. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nature Immunol. 9, 81–88 (2008).

    CAS  Google Scholar 

  88. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunol. 9, 432–443 (2008).

    CAS  Google Scholar 

  89. Stiber, J. et al. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nature Cell Biol. 10, 688–697 (2008).

    CAS  PubMed  Google Scholar 

  90. Braun, A. et al. STIM1 is essential for Fcγ receptor activation and autoimmune inflammation. Blood 113, 1097–1104 (2009).

    CAS  PubMed  Google Scholar 

  91. Grosse, J. et al. An EF hand mutation in Stim1 causes premature platelet activation and bleeding in mice. J. Clin. Invest. 117, 3540–3550 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Picard, C. et al. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 360, 1971–1980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wedel, B., Boyles, R.R., Putney, J. W. Jr & Bird, G. S. Role of the store-operated calcium entry proteins Stim1 and Orai1 in muscarinic cholinergic receptor-stimulated calcium oscillations in human embryonic kidney cells. J. Physiol. 579, 679–689 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jousset, H., Frieden, M. & Demaurex, N. STIM1 knockdown reveals that store-operated Ca2+ channels located close to sarco/endoplasmic Ca2+ ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J. Biol. Chem. 282, 11456–11464 (2007).

    CAS  PubMed  Google Scholar 

  95. Thompson, M. A., Pabelick, C. M. & Prakash, Y. S. Role of STIM1 in regulation of store-operated Ca2+ influx in pheochromocytoma cells. Cell. Mol. Neurobiol. 29, 193–202 (2009).

    CAS  PubMed  Google Scholar 

  96. Yang, S., Zhang, J. J. & Huang, X. Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15, 124–134 (2009).

    CAS  PubMed  Google Scholar 

  97. Aubart, F. C. et al. RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat. Mol. Ther. 17, 455–462 (2009).

    CAS  PubMed  Google Scholar 

  98. Dietrich, A. et al. Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch. 455, 465–477 (2007).

    CAS  PubMed  Google Scholar 

  99. Guo, R. W. et al. An essential role for stromal interaction molecule 1 in neointima formation following arterial injury. Cardiovasc. Res. 81, 660–668 (2009).

    CAS  PubMed  Google Scholar 

  100. Peel, S. E., Liu, B. & Hall, I. P. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle. Respir. Res. 7, 119 (2006).

    PubMed  PubMed Central  Google Scholar 

  101. Takahashi, Y. et al. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 361, 934–940 (2007).

    CAS  PubMed  Google Scholar 

  102. Jones, B. F., Boyles, R. R., Hwang, S. Y., Bird, G. S. & Putney, J. W. Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes. Hepatology 48, 1273–1281 (2008).

    CAS  PubMed  Google Scholar 

  103. El Boustany, C. et al. Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47, 2068–2077 (2008).

    CAS  PubMed  Google Scholar 

  104. Aromataris, E. C., Castro, J., Rychkov, G. Y. & Barritt, G. J. Store-operated Ca2+ channels and Stromal Interaction Molecule 1 (STIM1) are targets for the actions of bile acids on liver cells. Biochim. Biophys. Acta 1783, 874–885 (2008).

    CAS  PubMed  Google Scholar 

  105. Litjens, T. et al. Phospholipase C-γ1 is required for the activation of store-operated Ca2+ channels in liver cells. Biochem. J. 405, 269–276 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tolhurst, G. et al. Expression profiling and electrophysiological studies suggest a major role for Orai1 in the store-operated Ca2+ influx pathway of platelets and megakaryocytes. Platelets 19, 308–313 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Berra-Romani, R., Mazzocco-Spezzia, A., Pulina, M. V. & Golovina, V. A. Ca2+ handling is altered when arterial myocytes progress from a contractile to a proliferative phenotype in culture. Am. J. Physiol. Cell. Physiol. 295, C779–790 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Lu, W., Wang, J., Shimoda, L. A. & Sylvester, J. T. Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L104–113 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank members of the Cahalan and Parker laboratories at UCI who participated in a Stim/Orai Symposium (SOS), where discussions of the literature were extremely helpful; A. Penna and K. Németh-Cahalan for contributions to figures, and I. Parker, A. Demuro and A. Penna for providing the TIRF microscopy Supplementary Movie.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahalan, M. STIMulating store-operated Ca2+ entry. Nat Cell Biol 11, 669–677 (2009). https://doi.org/10.1038/ncb0609-669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0609-669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing