Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3

Abstract

Transforming growth factor β (TGF-β) has a major role in cell proliferation, differentiation and apoptosis in many cell types. Integration of the TGF-β pathway with other signalling cascades that control the same cellular processes may modulate TGF-β responses. Here we report the discovery of a new functional link between TGF-β and growth factor signalling pathways, mediated by a physical interaction between the serine-threonine kinase PKB (protein kinase B)/Akt and the transcriptional activator Smad3. Formation of the complex is induced by insulin, but inhibited by TGF-β stimulation, placing PKB–Smad3 at a point of convergence between these two pathways. PKB inhibits Smad3 by preventing its phosphorylation, binding to Smad4 and nuclear translocation. In contrast, Smad3 does not inhibit PKB. Inhibition of Smad3 by PKB occurs through a kinase-activity-independent mechanism, resulting in a decrease in Smad3-mediated transcription and protection of cells against TGF-β-induced apoptosis. Consistently, knockdown of the endogenous PKB gene with small-interfering RNA (siRNA) has the opposite effect. Our results suggest a very simple mechanism for the integration of signals arising from growth-factor- and TGF-β-mediated pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of the PKB–Smad3 interaction.
Figure 2: PKB inhibits Smad3 function.
Figure 3: PKB inhibits the Smad3-induced activation of transcription.
Figure 4: Wild-type and kinase-dead PKB protect cells against TGF-β-induced apoptosis.
Figure 5: The binding of Smad3 to PKB does not prevent phosphorylation-mediated activation of PKB.

Similar content being viewed by others

References

  1. Massague, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  CAS  Google Scholar 

  2. Heldin, C.H., Miyazono, K. & ten Dijke, P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–71 (1997).

    Article  CAS  Google Scholar 

  3. ten Dijke, P., Miyazono, K. & Heldin, C.H. Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr. Opin. Cell Biol. 8, 139–45 (1996).

    Article  CAS  Google Scholar 

  4. Moustakas, A., Souchelnytskyi, S. & Heldin, C.H. Smad regulation in TGF-β signal transduction. J. Cell Sci. 114, 4359–4369 (2001).

    CAS  Google Scholar 

  5. Attisano, L. & Wrana, J.L. Signal transduction by the TGF-β superfamily. Science 296, 1646–1647 (2002).

    Article  CAS  Google Scholar 

  6. Tanaka, S. & Wands, J.R. Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor β1-induced apoptosis. Cancer Res. 56, 3391–3394 (1996).

    CAS  Google Scholar 

  7. Buenemann, C.L., Willy, C., Buchmann, A., Schmiechen, A. & Schwarz, M. Transforming growth factor-β1-induced Smad signaling, cell-cycle arrest and apoptosis in hepatoma cells. Carcinogenesis 22, 447–452 (2001).

    Article  CAS  Google Scholar 

  8. Chen, R.H., Su, Y.H., Chuang, R.L. & Chang, T.Y. Suppression of transforming growth factor-β-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17, 1959–1968 (1998).

    Article  CAS  Google Scholar 

  9. Brazil, D.P. & Hemmings, B.A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).

    Article  CAS  Google Scholar 

  10. Remy, I., Pelletier, J.N., Galarneau, A. & Michnick, S.W. in Protein–Protein interactions: A Molecular Cloning Manual (ed. Golemis, E.A.) 449–475 (Cold Spring Harbor Laboratory Press, 2001).

    Google Scholar 

  11. Remy, I. & Michnick, S.W. Visualization of biochemical networks in living cells. Proc. Natl Acad. Sci. USA 98, 7678–7683 (2001).

    Article  CAS  Google Scholar 

  12. Galarneau, A., Primeau, M., Trudeau, L.E. & Michnick, S.W. β-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nature Biotechnol. 20, 619–622 (2002).

    Article  CAS  Google Scholar 

  13. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  14. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–98 (2002).

    Article  CAS  Google Scholar 

  15. Yanagisawa, K. et al. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells. Oncogene 17, 1743–1747 (1998).

    Article  CAS  Google Scholar 

  16. Yamamura, Y., Hua, X., Bergelson, S. & Lodish, H.F. Critical role of Smads and AP-1 complex in transforming growth factor-β-dependent apoptosis. J. Biol. Chem. 275, 36295–36302 (2000).

    Article  CAS  Google Scholar 

  17. Kim, B.C., Mamura, M., Choi, K.S., Calabretta, B. & Kim, S.J. Transforming growth factor β1 induces apoptosis through cleavage of BAD in a Smad3-dependent mechanism in FaO hepatoma cells. Mol. Cell. Biol. 22, 1369–1378 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, Y.A. et al. Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-β. Cell Growth Differ. 13, 123–130 (2002).

    CAS  Google Scholar 

  19. Yang, J. et al. Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nature Struct. Biol. 9, 940–944 (2002).

    Article  CAS  Google Scholar 

  20. Belham, C., Wu, S. & Avruch, J. Intracellular signalling: PDK1 — a kinase at the hub of things. Curr. Biol. 9, R93–R96 (1999).

    Article  CAS  Google Scholar 

  21. Stroschein, S.L., Wang, W. & Luo, K. Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation. J. Biol. Chem. 274, 9431–9441 (1999).

    Article  CAS  Google Scholar 

  22. Wrana, J.L. et al. TGF β signals through a heteromeric protein kinase receptor complex. Cell 71, 1003–1014 (1992).

    Article  CAS  Google Scholar 

  23. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  24. Keeton, M.R., Curriden, S.A., van Zonneveld, A.J. & Loskutoff, D.J. Identification of regulatory sequences in the type 1 plasminogen activator inhibitor gene responsive to transforming growth factor beta. J. Biol. Chem. 266, 23048–23052 (1991).

    CAS  Google Scholar 

  25. Westerhausen, D.R., Jr., Hopkins, W.E. & Billadello, J.J. Multiple transforming growth factor-β-inducible elements regulate expression of the plasminogen activator inhibitor type-1 gene in Hep G2 cells. J. Biol. Chem. 266, 1092–1100 (1991).

    CAS  Google Scholar 

  26. Wildey, G.M., Patil, S. & Howe, P.H. Smad3 potentiates transforming growth factor β (TGFβ)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. J. Biol. Chem. 278, 18069–18077 (2003).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Retinoic acid stimulates chondrocyte differentiation and enhances bone morphogenetic protein effects through induction of Smad1 and Smad5. Endocrinology 144, 2514–2523 (2003).

    Article  CAS  Google Scholar 

  28. Kim, W.H. et al. STAT1 plays an essential role in LPS/D-galactosamine-induced liver apoptosis and injury. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G761–G768 (2003).

    Article  CAS  Google Scholar 

  29. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  30. Staal, S.P. & Hartley, J.W. Thymic lymphoma induction by the AKT8 murine retrovirus. J. Exp. Med. 167, 1259–1264 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge S. Sénéchal for his technical assistance in FACS analysis. We also thank M. Primeau, G. Ghaddar and J. Lamerdin for DNA constructs; K. Luo, A. Conery and A. Moustakas for Smad cDNAs, TBRI, TBRII, cell lines and vectors; D. Billadeau for the pSuppress vector; J. Jin and J. Woodgett for PKB and GSK3β; M. Scheid for PDK1; and M. E. Greenberg for FKHRL1 and BAD. This work was supported by the Human Frontiers Science Program (HFSP) and the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Michnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information Figures

Fig. S1 (PDF 2683 kb)

Fig. S2

Fig. S3

Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remy, I., Montmarquette, A. & Michnick, S. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat Cell Biol 6, 358–365 (2004). https://doi.org/10.1038/ncb1113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing