Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci

Abstract

Chromatin states have to be faithfully duplicated during DNA replication to maintain cell identity. It is unclear whether or how ATP-dependent chromatin-remodelling factors are involved in this process. Here we provide evidence that the Williams syndrome transcription factor (WSTF) is targeted to replication foci through direct interaction with the DNA clamp PCNA, an important coordinator of DNA and chromatin replication. WSTF, in turn, recruits imitation switch (ISWI)-type nucleosome-remodelling factor SNF2H to replication sites. These findings reveal a novel recruitment mechanism for ATP-dependent chromatin-remodelling factors that is fundamentally different from the previously documented targeting by sequence-specific transcriptional regulators. RNA-interference-mediated depletion of WSTF or SNF2H causes a compaction of newly replicated chromatin and increases the amount of heterochromatin markers, including HP1β. This increase in the amount of HP1β protein is mediated by progression through S phase and is not the result of an increase in HP1β mRNA levels. We propose that the WSTF–ISWI complex has a role in the maintenance of chromatin structures during DNA replication.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WSTF targets replication foci throughout S phase.
Figure 2: WSTF binds directly to PCNA and targets SNF2H.
Figure 3: WSTF binds to replication sites by interacting with PCNA.
Figure 4: SNF2H binds to replication sites by interacting with PCNA through WSTF.
Figure 5: Depletion of WSTF leads to chromatin compaction and increases the amount of chromatin-bound heterochromatin markers.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Ridgway, P. & Almouzni, G. CAF-1 and the inheritance of chromatin states: at the crossroads of DNA replication and repair. J. Cell Sci. 113, 2647–2658 (2000).

    CAS  PubMed  Google Scholar 

  2. Becker, P. & Hörz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  3. Bozhenok, L., Wade, P. A. & Varga-Weisz, P. WSTF–ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21, 2231–2241 (2002).

    Article  CAS  Google Scholar 

  4. Dirscherl, S. S. & Krebs, J. E. Functional diversity of ISWI complexes. Biochem. Cell Biol. 82, 482–489 (2004).

    Article  CAS  Google Scholar 

  5. Francke, U. Williams-Beuren syndrome: genes and mechanisms. Hum. Mol. Genet. 8, 1947–1954 (1999).

    Article  CAS  Google Scholar 

  6. Kitagawa, H. et al. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams Syndrome. Cell 113, 905–917 (2003).

    Article  CAS  Google Scholar 

  7. Collins, N. et al. An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet. 32, 627–632 (2002).

    Article  CAS  Google Scholar 

  8. McNairn, A. J. & Gilbert, D. M. Epigenomic replication: Linking epigenetics to DNA replication. Bioessays 25, 647–656 (2003).

    Article  CAS  Google Scholar 

  9. Maga, G. & Hubscher, U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 116, 3051–3060 (2003).

    Article  CAS  Google Scholar 

  10. Zheleva, D. I. et al. A quantitative study of the in vitro binding of the C-terminal domain of p21 to PCNA: affinity, stoichiometry, and thermodynamics. Biochemistry 39, 7388–7397 (2000).

    Article  CAS  Google Scholar 

  11. Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M. & Kuriyan, J. Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87, 297–306 (1996).

    Article  CAS  Google Scholar 

  12. Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H. & Cardoso, M. C. DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol. Cell 10, 1355–1365 (2002).

    Article  CAS  Google Scholar 

  13. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  14. Bozhenok, L., Poot, R. A., Collins, N. & Varga-Weisz, P. in Methods in Enzymology Vol. 377 (eds Wu, C. & Allis, C. D.) 376–389 (Academic, San Diego, 2003).

    Google Scholar 

  15. Istomina, N. E. et al. Insulation of the chicken β-globin chromosomal domain from a chromatin-condensing protein, MENT. Mol. Cell. Biol. 23, 6455–6468 (2003).

    Article  CAS  Google Scholar 

  16. Grigoryev, S. A., Solovieva, V. O., Spirin, K. S. & Krasheninnikov, I. A. A novel nonhistone protein (MENT) promotes nuclear collapse at the terminal stage of avian erythropoiesis. Exp. Cell Res. 198, 268–275 (1992).

    Article  CAS  Google Scholar 

  17. Staynov, D. Z. & Proykova, Y. G. Quantitative analysis of DNase I digestion patterns of oligo- and polynucleosomes. J. Mol. Biol. 279, 59–71 (1998).

    Article  CAS  Google Scholar 

  18. Cusick, M. E., Lee, K. S., DePamphilis, M. L. & Wassarman, P. M. Structure of chromatin at deoxyribonucleic acid replication forks: nuclease hypersensitivity results from both prenucleosomal deoxyribonucleic acid and an immature chromatin structure. Biochemistry 22, 3873–3884 (1983).

    Article  CAS  Google Scholar 

  19. Martini, E., Roche, D. M., Marheineke, K., Verreault, A. & Almouzni, G. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J. Cell Biol. 143, 563–575 (1998).

    Article  CAS  Google Scholar 

  20. Lachner, M., O'Sullivan, R. J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003).

    Article  CAS  Google Scholar 

  21. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl Acad. Sci. USA 92, 1237–1241 (1995).

    Article  CAS  Google Scholar 

  22. Taddei, A., Roche, D., Sibarita, J. B., Turner, B. M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell Biol. 147, 1153–1166 (1999).

    Article  CAS  Google Scholar 

  23. Krude, T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp. Cell Res. 247, 148–159 (1999).

    Article  CAS  Google Scholar 

  24. Henderson, D. S., Banga, S. S., Grigliatti, T. A. & Boyd, J. B. Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J. 13, 1450–1459 (1994).

    Article  CAS  Google Scholar 

  25. Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221–225 (2000).

    Article  CAS  Google Scholar 

  26. Grewal, S. I. & Elgin, S. C. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12, 178–187 (2002).

    Article  CAS  Google Scholar 

  27. Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).

    Article  CAS  Google Scholar 

  28. Ayyanathan, K. et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855–1869 (2003).

    Article  CAS  Google Scholar 

  29. Minc, E., Courvalin, J. C. & Buendia, B. HP1γ associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet. Cell Genet. 90, 279–284 (2000).

    Article  CAS  Google Scholar 

  30. Gelbart, M. E., Rechsteiner, T., Richmond, T. J. & Tsukiyama, T. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21, 2098–2106 (2001).

    Article  CAS  Google Scholar 

  31. Bochar, D. A. et al. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl Acad. Sci. USA 97, 1038–1043 (2000).

    Article  CAS  Google Scholar 

  32. Iida, T. & Araki, H. Noncompetitive counteractions of DNA polymerase ε and ISW2–yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 217–227 (2004).

    Article  CAS  Google Scholar 

  33. Poot, R. A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).

    Article  CAS  Google Scholar 

  34. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  35. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Bickmore, A. Verreault, M. Bustin and R. Kingston for antibodies and reagents; R. Ferrer for a GST–PCNA construct; M. Rocchi for an α-satellite probe; T. Krude for advice on the use of mimosine; and G. Elliott for help with microscopy. Work in the laboratory of P.D.V.-W. is supported by the Marie Curie Cancer Care. D.v.d.B. was supported by grants from the Dutch Cancer Society (KWF), the British Council (Focus UK grant) and the Socrates exchange programme. Work in the laboratory of J.F. is supported by FCT-Portugal and FEDER (refs BCI-36194-99-00; SRFM-BPD-3547-2000), and by a Calouste Gulbenkian Foundation Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D. Varga-Weisz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Fig S1, Fig S2, Fig S3, Fig S4 (PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poot, R., Bozhenok, L., van den Berg, D. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6, 1236–1244 (2004). https://doi.org/10.1038/ncb1196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing