Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RhoA and microtubule dynamics control cell–basement membrane interaction in EMT during gastrulation

An Erratum to this article was published on 01 August 2008

Abstract

Molecular and cellular mechanisms of epithelial–mesenchymal transition (EMT), crucial in development and pathogenesis, are still poorly understood. Here we provide evidence that distinct cellular steps of EMT occur sequentially during gastrulation. Basement membrane (BM) breakdown is the first recognizable step and is controlled by loss of basally localized RhoA activity and its activator neuroepithelial-transforming-protein-1 (Net1). Failure of RhoA downregulation during EMT leads to BM retention and reduction of its activity in normal epithelium leads to BM breakdown. We also show that this is in part mediated by RhoA-regulated basal microtubule stability. Microtubule disruption causes BM breakdown and its stabilization results in BM retention. We propose that loss of Net1 before EMT reduces basal RhoA activity and destabilizes basal microtubules, causing disruption of epithelial cell–BM interaction and subsequently, breakdown of the BM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RhoA mis-expression causes EMT defects.
Figure 2: Expression of EMT-related markers.
Figure 3: Effect of RhoA on laminin and distribution of active RhoA.
Figure 4: Net1 expression pattern and its effect on laminin.
Figure 5: Inhibition of RhoA signalling causes premature BM breakdown and rescues mesoderm aggregation.
Figure 6: Effect of nocodazole and taxol on laminin and distribution of microtubules during EMT.
Figure 7: 6G7 recognizes a modified β-tubulin localized to the basal cortex in lateral cells and absent in medial cells.
Figure 8: A model for the regulation of cell–BM interaction by basal RhoA activity and microtubule dynamics.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hay, E. D. An overview of epithelio–mesenchymal transformation. Acta Anat. (Basel) 154, 8–20 (1995).

    Article  CAS  Google Scholar 

  2. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  Google Scholar 

  3. Thiery, J. P. Epithelial–mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 15, 740–746 (2003).

    Article  CAS  Google Scholar 

  4. Zavadil, J. & Bottinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  Google Scholar 

  5. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  6. Hatta, K. & Takeichi, M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320, 447–449 (1986).

    Article  CAS  Google Scholar 

  7. Zohn, I. E. et al. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 125, 957–969 (2006).

    Article  CAS  Google Scholar 

  8. Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83 (2000).

    Article  CAS  Google Scholar 

  9. Lee, J. M., Dedhar, S., Kalluri, R. & Thompson, E. W. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973–981 (2006).

    Article  CAS  Google Scholar 

  10. Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  Google Scholar 

  11. Fukata, M. & Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nature Rev. Mol. Cell Biol. 2, 887–897 (2001).

    Article  CAS  Google Scholar 

  12. Van Aelst, L. & Symons, M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 16, 1032–1054 (2002).

    Article  CAS  Google Scholar 

  13. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  Google Scholar 

  14. Keller, R. Cell migration during gastrulation. Curr. Opin. Cell Biol. 17, 533–541 (2005).

    Article  CAS  Google Scholar 

  15. Stern, C. D. Gastrulation: from cells to embryo (Cold Spring Harbor Laboratory Press New York, 2004).

    Google Scholar 

  16. Tam, P. P. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68, 3–25 (1997).

    Article  CAS  Google Scholar 

  17. Sheng, G., dos Reis, M. & Stern, C. D. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation. Cell 115, 603–613 (2003).

    Article  CAS  Google Scholar 

  18. Iimura, T. & Pourquie, O. Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 442, 568–571 (2006).

    Article  CAS  Google Scholar 

  19. Gustafson, T. & Wolpert, L. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Gastrulation in vegetalized larvae. Exp. Cell Res. 22, 437–449 (1961).

    Article  CAS  Google Scholar 

  20. Newgreen, D. F. & Minichiello, J. Control of epitheliomesenchymal transformation. I. Events in the onset of neural crest cell migration are separable and inducible by protein kinase inhibitors. Dev. Biol. 170, 91–101 (1995).

    Article  CAS  Google Scholar 

  21. Watanabe, T. et al. Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev. Biol. 305, 625–636 (2007).

    Article  CAS  Google Scholar 

  22. Fuse, T. et al. Conditional activation of RhoA suppresses the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation. Biochem. Biophys. Res. Commun. 318, 665–672 (2004).

    Article  CAS  Google Scholar 

  23. Benink, H. A. & Bement, W. M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168, 429–439 (2005).

    Article  CAS  Google Scholar 

  24. Chan, A. M., Takai, S., Yamada, K. & Miki, T. Isolation of a novel oncogene, NET1, from neuroepithelioma cells by expression cDNA cloning. Oncogene 12, 1259–1266 (1996).

    CAS  PubMed  Google Scholar 

  25. Alberts, A. S. & Treisman, R. Activation of RhoA and SAPK/JNK signalling pathways by the RhoA-specific exchange factor mNET1. EMBO J. 17, 4075–4085 (1998).

    Article  CAS  Google Scholar 

  26. Miyakoshi, A., Ueno, N. & Kinoshita, N. Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development. Differentiation 72, 48–55 (2004).

    Article  CAS  Google Scholar 

  27. Schmidt, A. & Hall, A. The Rho exchange factor Net1 is regulated by nuclear sequestration. J. Biol. Chem. 277, 14581–14588 (2002).

    Article  CAS  Google Scholar 

  28. Qin, H. et al. Characterization of the biochemical and transforming properties of the neuroepithelial transforming protein 1. J. Biol. Chem. 280, 7603–7613 (2005).

    Article  CAS  Google Scholar 

  29. Aktories, K., Braun, U., Rosener, S., Just, I. & Hall, A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem. Biophys. Res. Commun. 158, 209–213 (1989).

    Article  CAS  Google Scholar 

  30. Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol. 4, 583–591 (2002).

    Article  CAS  Google Scholar 

  31. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    Article  CAS  Google Scholar 

  32. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–85 (2002).

    Article  CAS  Google Scholar 

  33. Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell 11, 21–32 (2006).

    Article  CAS  Google Scholar 

  34. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005).

    Article  CAS  Google Scholar 

  35. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004).

    Article  CAS  Google Scholar 

  36. van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenaar, W. H. & Kranenburg, O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 276, 4948–4956 (2001).

    Article  CAS  Google Scholar 

  37. Birkenfeld, J. et al. GEF–H1 Modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev. Cell 12, 699–712 (2007).

    Article  CAS  Google Scholar 

  38. Halfter, W., Dong, S., Yip, Y. P., Willem, M. & Mayer, U. A critical function of the pial basement membrane in cortical histogenesis. J. Neurosci. 22, 6029–6040 (2002).

    Article  CAS  Google Scholar 

  39. Stern, C. D., Manning, S. & Gillespie, J. I. Fluid transport across the epiblast of the early chick embryo. J. Embryol. Exp. Morphol. 88, 365–384 (1985).

    CAS  PubMed  Google Scholar 

  40. Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol. 6, 622–634 (2005).

    Article  CAS  Google Scholar 

  41. Nakaya, Y., Kuroda, S., Katagiri, Y. T., Kaibuchi, K. & Takahashi, Y. Mesenchymal–epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev. Cell 7, 425–438 (2004).

    Article  CAS  Google Scholar 

  42. Liu, J. P. & Jessell, T. M. A role for rhoB in the delamination of neural crest cells from the dorsal neural tube. Development 125, 5055–5067 (1998).

    CAS  PubMed  Google Scholar 

  43. Liu, A. X., Rane, N., Liu, J. P. & Prendergast, G. C. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol. Cell Biol. 21, 6906–6912 (2001).

    Article  CAS  Google Scholar 

  44. Hakem, A. et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 19, 1974–1979 (2005).

    Article  CAS  Google Scholar 

  45. Bement, W. M., Benink, H. A. & von Dassow, G. A microtubule-dependent zone of active RhoA during cleavage plane specification. J. Cell Biol. 170, 91–101 (2005).

    Article  CAS  Google Scholar 

  46. Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

    Article  CAS  Google Scholar 

  47. Simoes, S. et al. Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development 133, 4257–4267 (2006).

    Article  CAS  Google Scholar 

  48. Wu, K. Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  Google Scholar 

  49. Yonemura, S., Hirao-Minakuchi, K. & Nishimura, Y. Rho localization in cells and tissues. Exp. Cell Res. 295, 300–314 (2004).

    Article  CAS  Google Scholar 

  50. Sasai, N., Nakazawa, Y., Haraguchi, T. & Sasai, Y. The neurotrophin-receptor-related protein NRH1 is essential for convergent extension movements. Nature Cell Biol. 6, 741–748 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fujio Toki for the initial analyses of fibronectin, laminin and 6G7; Yoshiko Takahashi for bringing the phenotype of RhoA cells to our attention; Kathy Joubin for sharing Net1 information; Cantas Alev for generating the Net1 probe; Shigenobu Yonemura and Kazuyo Misaki for help with EM; Masatoshi Takeichi, Yoshiko Takahashi, William Bement, Jeffrey Frost, Alan Hall, Kozo Kaibuchi and Shigenobu Yonemura for sharing reagents; Noriaki Sasai and Yoshiki Sasai for help with Xenopus experiments. Claudio Stern, Donald Newgreen, Kozo Kaibuchi, Masatoshi Takeichi, Fumio Matsuzaki, Shigeo Hayashi and Shigenobu Yonemura for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.N. and G.S. designed the experiments and analysed the data; Y.N, E.W.S. and Y.W. performed the experiments; G.S wrote the manuscript.

Corresponding author

Correspondence to Guojun Sheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7 and S8 (PDF 2967 kb)

Supplementary Information

Supplementary Movie 1 (AVI 2394 kb)

Supplementary Information

Supplementary Movie 2 (AVI 2394 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakaya, Y., Sukowati, E., Wu, Y. et al. RhoA and microtubule dynamics control cell–basement membrane interaction in EMT during gastrulation. Nat Cell Biol 10, 765–775 (2008). https://doi.org/10.1038/ncb1739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1739

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing