Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons

Abstract

Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: dlic21157 functions cell-autonomously to regulate dendrite and axon development.
Figure 2: Loss of dynein function alters Golgi outpost distribution.
Figure 3: Localization of endosomes and Ppk depends on dynein.
Figure 4: Mislocalization of Nod–β-gal, but not Kin–β-gal, in dynein mutant neurons.
Figure 5: Mixed orientation of axonal microtubules in dic1229/dicts neurons revealed by EB1–GFP.

Similar content being viewed by others

References

  1. Hirokawa, N. & Takemura, R. Molecular motors and mechanisms of directional transport in neurons. Nature Rev. Neurosci. 6, 201–214 (2005).

    Article  CAS  Google Scholar 

  2. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988).

    Article  CAS  Google Scholar 

  3. Baas, P. W., Vidya Nadar, C. & Myers, K. A. Axonal transport of microtubules: the long and short of it. Traffic 7, 490–498 (2006).

    Article  CAS  Google Scholar 

  4. Sharp, D. J. et al. Identification of a microtubule-associated motor protein essential for dendritic differentiation. J. Cell Biol. 138, 833–843 (1997).

    Article  CAS  Google Scholar 

  5. Yu, W. et al. Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J. Neurosci. 20, 5782–5791 (2000).

    Article  CAS  Google Scholar 

  6. Andersen, R., Li, Y., Resseguie, M. & Brenman, J. E. Calcium/calmodulin-dependent protein kinase II alters structural plasticity and cytoskeletal dynamics in Drosophila. J. Neurosci. 25, 8878–8888 (2005).

    Article  CAS  Google Scholar 

  7. Rolls, M. M. et al. Polarity and intracellular compartmentalization of Drosophila neurons. Neural Develop. 2, 7–20 (2007).

    Article  Google Scholar 

  8. Ye, B. et al. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130, 717–729 (2007).

    Article  CAS  Google Scholar 

  9. Yamamoto, M., Ueda, R., Takahashi, K., Saigo, K. & Uemura, T. Control of axonal sprouting and dendrite branching by the Nrg–Ank complex at the neuron–glia interface. Curr. Biol. 16, 1678–1683 (2006).

    Article  CAS  Google Scholar 

  10. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nature Cell Biol. 4, E236–242 (2002).

    Article  CAS  Google Scholar 

  11. Horton, A. C. et al. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48, 757–771 (2005).

    Article  CAS  Google Scholar 

  12. Murray, J. W. & Wolkoff, A. W. Roles of the cytoskeleton and motor proteins in endocytic sorting. Adv. Drug Deliv. Rev. 55, 1385–1403 (2003).

    Article  CAS  Google Scholar 

  13. Park, M. et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52, 817–830 (2006).

    Article  CAS  Google Scholar 

  14. Park, M., Penick, E. C., Edwards, J. G., Kauer, J. A. & Ehlers, M. D. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975 (2004).

    Article  CAS  Google Scholar 

  15. Sweeney, N. T., Brenman, J. E., Jan, Y. N. & Gao, F. B. The coiled-coil protein shrub controls neuronal morphogenesis in Drosophila. Curr. Biol. 16, 1006–1011 (2006).

    Article  CAS  Google Scholar 

  16. Ernstrom, G. G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  Google Scholar 

  17. Adams, C. M. et al. Ripped pocket and pickpocket, novel Drosophila DEG/ENaC subunits expressed in early development and in mechanosensory neurons. J. Cell Biol. 140, 143–152 (1998).

    Article  CAS  Google Scholar 

  18. Clark, I. E., Jan, L. Y. & Jan, Y. N. Reciprocal localization of Nod and kinesin fusion proteins indicates microtubule polarity in the Drosophila oocyte, epithelium, neuron and muscle. Development 124, 461–470 (1997).

    CAS  PubMed  Google Scholar 

  19. Cui, W. et al. Drosophila Nod protein binds preferentially to the plus ends of microtubules and promotes microtubule polymerization in vitro. Mol. Biol. Cell 16, 5400–5409 (2005).

    Article  CAS  Google Scholar 

  20. Sanchez-Soriano, N. et al. Are dendrites in Drosophila homologous to vertebrate dendrites? Dev. Biol. 288, 126–138 (2005).

    Article  CAS  Google Scholar 

  21. Lee, T., Winter, C., Marticke, S. S., Lee, A. & Luo, L. Essential roles of Drosophila RhoA in the regulation of neuroblast proliferation and dendritic but not axonal morphogenesis. Neuron 25, 307–316 (2000).

    Article  CAS  Google Scholar 

  22. Whited, J. L., Cassell, A., Brouillette, M. & Garrity, P. A. Dynactin is required to maintain nuclear position within postmitotic Drosophila photoreceptor neurons. Development 131, 4677–4686 (2004).

    Article  CAS  Google Scholar 

  23. Welte, M. A. Bidirectional transport along microtubules. Curr. Biol. 14, R525–537 (2004).

    Article  CAS  Google Scholar 

  24. Giniger, E., Wells, W., Jan, L. Y. & Jan, Y. N. Tracing neurons with a kinesin-β-galactosidase fusion protein. Roux's Arch. Dev. Biol. 202, 112–122 (1993).

    Article  CAS  Google Scholar 

  25. Pierce, J. P., Mayer, T. & McCarthy, J. B. Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr. Biol. 11, 351–355 (2001).

    Article  CAS  Google Scholar 

  26. Sytnyk, V. et al. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J. Cell Biol. 159, 649–661 (2002).

    Article  CAS  Google Scholar 

  27. Chabin-Brion, K. et al. The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12, 2047–2060 (2001).

    Article  CAS  Google Scholar 

  28. Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007).

    Article  CAS  Google Scholar 

  29. Papoulas, O., Hays, T. S. & Sisson, J. C. The golgin Lava lamp mediates dynein-based Golgi movements during Drosophila cellularization. Nature Cell Biol. 7, 612–618 (2005).

    Article  CAS  Google Scholar 

  30. Grueber, W. B., Jan, L. Y. & Jan, Y. N. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129, 2867–2878 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Uemura, F.B. Gao, L. Luo, R. Warrior, T. Hays and the Bloomington Stock Center for fly stocks; W. Song, C. Han, S. Zhu, P. Soba, J. Parrish, J. Kardon and S. Reck-Peterson for helpful suggestions and comments on the manuscript, and members of the Jan Lab for stimulating discussions. We thank T. Uemura for communicating results before publication. This work was supported by Kirschstein NRSA fellowships F32-MH75223 (Y. Zheng.), F32-HD53199 (J.W.), an NIH Pathway to Independence Award K99MH080599 (B.Y.), a graduate fellowship from Genentech and the Sandler Family Supporting Foundation (Y. Zhang) and NIH grants R01NS40929 and R01NS47200 (Y.N.J.). Y.N.J. and L.Y.J. are Investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

Y. Zheng, J.W., S.H.Y. and Y.N.J. conceived and designed the project; Y. Zheng, J.W., A.K. and S.H.Y. carried out the genetic screen; B.Y.; Y. Zhang completed the Golgi outpost analysis and S.Z. analysed the EB1–GFP movies; Y. Zheng and J.W. performed all other experiments and contributed equally to this work; Y. Zheng, J.W. L.Y.J. and Y.N.J. wrote the paper; all authors read and edited the manuscript.

Corresponding author

Correspondence to Yuh Nung Jan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

SUpplementary Figures S1, S2, S3, S4, S5, S6, S7, Supplementary methods and Supplementary Table S1 (PDF 2905 kb)

Supplementary Information

Supplementary Movie 1 (MOV 9228 kb)

Supplementary Information

Supplementary Movie 2 (MOV 7057 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1416 kb)

Supplementary Information

Supplementary Movie 4 (MOV 797 kb)

Supplementary Information

Supplementary Movie 5 (MOV 1554 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Wildonger, J., Ye, B. et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10, 1172–1180 (2008). https://doi.org/10.1038/ncb1777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing