Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein

Abstract

During development, axon growth rates are precisely regulated to provide temporal control over pathfinding1,2. The precise temporal regulation of axonal growth is a key step in the formation of functional synapses and the proper patterning of the nervous system. The rate of axonal elongation is increased by factors such as netrin-1 and nerve growth factor (NGF), which stimulate axon outgrowth using incompletely defined pathways. To clarify the mechanism of netrin-1- and NGF-stimulated axon growth, we explored the role of local protein translation. We found that intra-axonal protein translation is required for stimulated, but not basal, axon outgrowth. To identify the mechanism of translation-dependent outgrowth, we examined the PAR complex, a cytoskeleton regulator3. We found that the PAR complex, like local translation, is required for stimulated, but not basal, outgrowth. Par3 mRNA is localized to developing axons, and NGF and netrin-1 trigger its local translation. Selective ablation of Par3 mRNA from axons abolishes the outgrowth-promoting effect of NGF. These results identify a new role for local translation and the PAR complex in axonal outgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local protein translation is required for NGF signalling.
Figure 2: Proteins constituting the polarity complex are localized to growth cones of DRG and DSC neurons after axon formation.
Figure 3: Signalling through the PAR complex is required for stimulated axon growth.
Figure 4: Par3 mRNA is localized to axons and growth cones, and locally translated in response to NGF.
Figure 5: Local translation of PAR3 is required for NGF signalling.

Similar content being viewed by others

References

  1. Godement, P., Wang, L. C. & Mason, C. A. Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline. J. Neurosci. 14, 7024–7039 (1994).

    Article  CAS  Google Scholar 

  2. Gore, B. B., Wong, K. G. & Tessier-Lavigne, M. Stem cell factor functions as an outgrowth-promoting factor to enable axon exit from the midline intermediate target. Neuron 57, 501–510 (2008).

    Article  CAS  Google Scholar 

  3. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  CAS  Google Scholar 

  4. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  Google Scholar 

  5. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  Google Scholar 

  6. Tucker, K. L., Meyer, M. & Barde, Y. A. Neurotrophins are required for nerve growth during development. Nature Neurosci. 4, 29–37 (2001).

    Article  CAS  Google Scholar 

  7. Lin, A. C. & Holt, C. E. Function and regulation of local axonal translation. Curr. Opin. Neurobiol. 18, 60–68 (2008).

    Article  CAS  Google Scholar 

  8. Hengst, U. & Jaffrey, S. R. Function and translational regulation of mRNA in developing axons. Semin. Cell Dev. Biol. 18, 209–215 (2007).

    Article  CAS  Google Scholar 

  9. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    Article  CAS  Google Scholar 

  10. Ming, G. L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    Article  CAS  Google Scholar 

  11. Leung, K. M. et al. Asymmetrical β-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature Neurosci. 9, 1247–1256 (2006).

    Article  CAS  Google Scholar 

  12. Cox, L. J., Hengst, U., Gurskaya, N. G., Lukyanov, K. A. & Jaffrey, S. R. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nature Cell. Biol. 10, 149–159 (2008).

    Article  CAS  Google Scholar 

  13. Lund, K. & Campenot, R. B. Synthesis of β-tubulin, actin, and other proteins in axons of sympathetic neurons in compartmented cultures. J. Neurosci. 19, 1–9 (1999).

    Article  Google Scholar 

  14. Taylor, A. M. et al. A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nature Methods 2, 599–605 (2005).

    Article  CAS  Google Scholar 

  15. Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004).

    Article  CAS  Google Scholar 

  16. Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    Article  CAS  Google Scholar 

  17. Shekarabi, M. & Kennedy, T. E. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol. Cell. Neurosci. 19, 1–17 (2002).

    Article  CAS  Google Scholar 

  18. Lin, D. et al. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell. Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  19. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    Article  CAS  Google Scholar 

  20. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  21. Charron, F., Stein, E., Jeong, J., McMahon, A. P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    Article  CAS  Google Scholar 

  22. Okada, A. et al. Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature 444, 369–373 (2006).

    Article  CAS  Google Scholar 

  23. Fazeli, A. et al. Phenotype of mice lacking functional deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997).

    Article  CAS  Google Scholar 

  24. Lonze, B. E., Riccio, A., Cohen, S. & Ginty, D. D. Apoptosis, axonal growth defects, and degeneration of peripheral neurons in mice lacking CREB. Neuron 34, 371–385 (2002).

    Article  CAS  Google Scholar 

  25. Wu, K. Y. et al. Soluble adenylyl cyclase is required for netrin-1 signaling in nerve growth cones. Nature Neurosci. 9, 1257–1264 (2006).

    Article  CAS  Google Scholar 

  26. Etienne-Manneville, S. & Hall, A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 15, 67–72 (2003).

    Article  CAS  Google Scholar 

  27. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  Google Scholar 

  28. Hengst, U., Cox, L. J., Macosko, E. Z. & Jaffrey, S. R. Functional and selective RNA interference in developing axons and growth cones. J. Neurosci. 26, 5727–5732 (2006).

    Article  CAS  Google Scholar 

  29. Wu, K. Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  Google Scholar 

  30. Park, J. W., Vahidi, B., Taylor, A. M., Rhee, S. W. & Jeon, N. L. Microfluidic culture platform for neuroscience research. Nature Protoc 1, 2128–2136 (2006).

    Article  CAS  Google Scholar 

  31. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. & Schuman, E. M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001).

    Article  CAS  Google Scholar 

  32. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  Google Scholar 

  33. Nishimura, T. et al. PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell. Biol. 7, 270–277 (2005).

    Article  CAS  Google Scholar 

  34. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  Google Scholar 

  35. Willis, D. E. et al. Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. J. Cell Biol. 178, 965–980 (2007).

    Article  CAS  Google Scholar 

  36. Suganuma, M. et al. Calyculin A, an inhibitor of pprotein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res. 50, 3521–3525 (1990).

    CAS  PubMed  Google Scholar 

  37. Cohen, P. T. & Cohen, P. Discovery of a protein phosphatase activity encoded in the genome of bacteriophage λ. Probable identity with open reading frame 221. Biochem. J. 260, 931–934 (1989).

    Article  CAS  Google Scholar 

  38. Femino, A. M., Fogarty, K., Lifshitz, L. M., Carrington, W. & Singer, R. H. Visualization of single molecules of mRNA in situ. Methods Enzymol. 361, 245–304 (2003).

    Article  CAS  Google Scholar 

  39. Akimoto, K. et al. EGF or PDGF receptors activate atypical PKCλ through phosphatidylinositol 3-kinase. EMBO J. 15, 788–798 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Pawson (Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Canada) for the PAR6 antibody, S. Schlesinger and A. Jeromin for Sindbis plasmids, J. Harris (University of California Irvine, USA), for preparing masters for casting microfluidic chambers and members of the Jaffrey laboratory for helpful discussions. This research was supported by the National Institute of Neurological Diseases and Stroke, a Klingenstein Fellowship in the Neurosciences, Irma T. Hirschl and Monique Weill-Caulier Trusts Career Scientist Award, the New York State Spinal Cord Injury Research Board (S.R.J.), a predoctoral fellowship from Boehringer Ingelheim Fonds (A.D.), a fellowship from the Paralysis Project of America and a Pathway to Independence Award (K99) from the National Institute of Mental Health (U.H.).

Author information

Authors and Affiliations

Authors

Contributions

U.H. and S.R.J. designed the experiments and wrote the manuscript. U.H. and A.D. performed the experiments and collected and analysed data. U.H. prepared the figures. H.J.K . and N.L.J. designed microfluidic chambers and provided assistance with their manufacture and use.

Corresponding author

Correspondence to Samie R. Jaffrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengst, U., Deglincerti, A., Kim, H. et al. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat Cell Biol 11, 1024–1030 (2009). https://doi.org/10.1038/ncb1916

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1916

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing