Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subcellular spatial regulation of canonical Wnt signalling at the primary cilium

Abstract

Mechanisms of signal transduction regulation remain a fundamental question in a variety of biological processes and diseases. Previous evidence indicates that the primary cilium can act as a signalling hub1, but its exact role in many of the described pathways has remained elusive. Here, we investigate the mechanism of cilia-mediated regulation of the canonical Wnt pathway. We found that primary cilia dampen canonical Wnt signalling through a spatial mechanism involving compartmentalization of signalling components. The cilium, through regulated intraflagellar transport, diverts Jouberin (Jbn), a ciliopathy protein and context-specific Wnt pathway regulator2, away from the nucleus and limits β-catenin nuclear entry. This repressive regulation does not silence the pathway, but instead maintains a discrete range of Wnt responsiveness; cells without cilia have potentiated Wnt responses, whereas cells with multiple cilia have inhibited responses. Furthermore, we show that this regulation occurs during embryonic development and is disrupted in cancer cell proliferation. Together these data explain a spatial mechanism of Wnt signalling regulation that may provide insight into ciliary regulation of other signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The primary cilium dampens Wnt activity by regulating β-catenin.
Figure 2: The primary cilium inhibits Jbn-mediated Wnt pathway regulation.
Figure 3: The primary cilium sequesters Jbn and β-catenin away from the nucleus.
Figure 4: Wnt is regulated by the primary cilium during embryonic development.
Figure 5: Regulation of cancer cell proliferation by cilia-localized Jbn.

Similar content being viewed by others

References

  1. Berbari, N. F., O’Connor, A. K., Haycraft, C. J. & Yoder, B. K. The primary cilium as a complex signaling center. Curr. Biol. 19, R526–R535 (2009).

    Article  CAS  Google Scholar 

  2. Lancaster, M. A. et al. Impaired Wnt-β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 15, 1046–1054 (2009).

    Article  CAS  Google Scholar 

  3. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  Google Scholar 

  4. Lai, S. L., Chien, A. J. & Moon, R. T. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res. 19, 532–545 (2009).

    Article  CAS  Google Scholar 

  5. Sharma, N., Berbari, N. F. & Yoder, B. K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top. Dev. Biol. 85, 371–427 (2008).

    Article  CAS  Google Scholar 

  6. Lancaster, M. A. & Gleeson, J. G. The primary cilium as a cellular signaling center: lessons from disease. Curr. Opin. Genet. Dev. 19, 220–229 (2009).

    Article  CAS  Google Scholar 

  7. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  Google Scholar 

  8. Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    Article  CAS  Google Scholar 

  9. Corbit, K. C. et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70–76 (2008).

    Article  CAS  Google Scholar 

  10. Huang, P. & Schier, A. F. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136, 3089–3098 (2009).

    Article  CAS  Google Scholar 

  11. Ocbina, P. J., Tuson, M. & Anderson, K. V. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One 4, e6839 (2009).

    Article  Google Scholar 

  12. Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nat. Cell Biol. 6, 52–58 (2004).

    Article  CAS  Google Scholar 

  13. Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032–1036 (2009).

    Article  CAS  Google Scholar 

  14. May, S. R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    Article  CAS  Google Scholar 

  15. Hedgepeth, C. M. et al. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev. Biol. 185, 82–91 (1997).

    Article  CAS  Google Scholar 

  16. Miyoshi, K., Kasahara, K., Miyazaki, I. & Asanuma, M. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem. Biophys. Res. Commun. 388, 757–762 (2009).

    Article  CAS  Google Scholar 

  17. Louie, C. M. & Gleeson, J. G. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum. Mol. Genet. 14 (Spec No. 2), R235–R242 (2005).

    Article  CAS  Google Scholar 

  18. Dixon-Salazar, T. et al. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am. J. Hum. Genet. 75, 979–987 (2004).

    Article  CAS  Google Scholar 

  19. Ferland, R. J. et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet. 36, 1008–1013 (2004).

    Article  CAS  Google Scholar 

  20. Geng, L. et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell Sci. 119, 1383–1395 (2006).

    Article  CAS  Google Scholar 

  21. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  22. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473–481 (1999).

    Article  CAS  Google Scholar 

  23. Signor, D. et al. Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol. 147, 519–530 (1999).

    Article  CAS  Google Scholar 

  24. Pazour, G. J., Dickert, B. L. & Witman, G. B. The DHC1B (DHC2) isoform of cytoplasmic dynein is necessary for flagellar maintenance as well as flagellar assembly. Mol. Biol. Cell 10S, 396a (1999).

    Google Scholar 

  25. Anderson, C. T. & Stearns, T. Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr. Biol. 19, 1498–1502 (2009).

    Article  CAS  Google Scholar 

  26. Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  Google Scholar 

  27. Caspary, T., Larkins, C. E. & Anderson, K. V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  Google Scholar 

  28. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  Google Scholar 

  29. Han, Y. G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    Article  CAS  Google Scholar 

  30. Wong, S. Y. et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    Article  CAS  Google Scholar 

  31. Kennah, E. et al. Identification of tyrosine kinase, HCK, and tumor suppressor, BIN1, as potential mediators of AHI-1 oncogene in primary and transformed CTCL cells. Blood 113, 4646–4655 (2009).

    Article  CAS  Google Scholar 

  32. Tighe, A., Johnson, V. L. & Taylor, S. S. Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J. Cell Sci. 117, 6339–6353 (2004).

    Article  CAS  Google Scholar 

  33. Lancaster, M. A. et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med.doi:10.1038/nm.2380 (2011).

  34. Townsley, F. M., Cliffe, A. & Bienz, M. Pygopus and legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nat. Cell Biol. 6, 626–633 (2004).

    Article  CAS  Google Scholar 

  35. Plotnikova, O. V., Golemis, E. A. & Pugacheva, E. N. Cell cycle-dependent ciliogenesis and cancer. Cancer Res. 68, 2058–2061 (2008).

    Article  CAS  Google Scholar 

  36. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  Google Scholar 

  37. Yee, S. P. & Rigby, P. W. The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev. 7, 1277–1289 (1993).

    Article  CAS  Google Scholar 

  38. Nelson, S. B., Lawson, M. A., Kelley, C. G. & Mellon, P. L. Neuron-specific expression of the rat gonadotropin-releasing hormone gene is conferred by interactions of a defined promoter element with the enhancer in GT1-7 cells. Mol. Endocrinol 14, 1509–1522 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Gleeson laboratory for technical expertise and feedback and the UCSD Neuroscience Microscopy Core. We would like to thank C. Kintner for helpful feedback on the manuscript. We also thank K. Willert (School of Medicine, University of California, San Diego) for reagents and technical expertise. We are grateful to S. Piccolo (Departments of Histology, Microbiology and Medical Biotechnologies, University of Padua, Italy) for the BATgal mice and to A. S. Peterson (Ernest Gallo Clinic and Research Center, Emeryville, California) for the Dnchc2 mutant mice and MEFs as well as L. S. B. Goldstein (School of Medicine, University of California, San Diego) for Kif3a mutant mice. We also thank M. G. Rosenfeld (School of Medicine, University of California, San Diego) for the β-catΔN construct and R. T. Moon (Department of Pharmacology, University of Washington) for the Super Topflash construct, as well as T. Caspary (Department of Human Genetics, Emory University School of Medicine) for the Arl13b antibody, C. Janke (Curie Institut, Paris, France) for GT335 antibody and R. B. Vallee (Department of Pathology and Cell Biology, Columbia University) for Dnchc1 and Dnchc2 antibodies. We also thank P. Mellon (School of Medicine, University of California, San Diego) for the β-galactosidase expression construct for luciferase assays. M.A.L. received support from the Bear Necessities Pediatric Cancer Foundation. This work was supported by the US National Institutes of Health, and the Burroughs Wellcome Fund in Translational Research (J.G.G.). J.G.G. is an investigator with Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.G.G. and M.A.L. conceived and designed the experimental approach, interpreted data and wrote the manuscript. M.A.L. and J.S. carried out experiments. J.G.G. directed and supervised the project.

Corresponding author

Correspondence to Joseph G. Gleeson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancaster, M., Schroth, J. & Gleeson, J. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat Cell Biol 13, 700–707 (2011). https://doi.org/10.1038/ncb2259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing