Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1

Abstract

The signalling cascade including Raf, mitogen-activated protein kinase (MAPK) kinase and extracellular-signal-regulated kinase (ERK) is important in many facets of cellular regulation1,2,3. Raf is activated through both Ras-dependent and Ras-independent mechanisms4,5,6, but the regulatory mechanisms of Raf activation remain unclear7,8,9. Two families of membrane-bound molecules, Sprouty and Sprouty-related EVH1-domain-containing protein (Spred) have been identified10,11,12,13 and characterized as negative regulators of growth-factor-induced ERK activation14,15,16,17,18,19,20,21,22,23,24,25. But the molecular functions of mammalian Sproutys have not been clarified. Here we show that mammalian Sprouty4 suppresses vascular epithelial growth factor (VEGF)-induced, Ras-independent activation of Raf1 but does not affect epidermal growth factor (EGF)-induced, Ras-dependent activation of Raf1. Sprouty4 binds to Raf1 through its carboxy-terminal cysteine-rich domain, and this binding is necessary for the inhibitory activity of Sprouty4. In addition, Sprouty4 mutants of the amino-terminal region containing the conserved tyrosine residue, which is necessary for suppressing fibroblast growth factor signalling19,25, still inhibit the VEGF-induced ERK pathway. Our results show that receptor tyrosine kinases use distinct pathways for Raf and ERK activation and that Sprouty4 differentially regulates these pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sprouty4 inhibits VEGF-induced Raf1 activation.
Figure 2: Sprouty4 inhibits PKC-mediated activation of Raf1.
Figure 3: Isolation of Raf1 as a target molecule for Sproutys.
Figure 4: Raf1 binding is necessary for the inhibitory activity of Sprouty4.
Figure 5: Sprouty4 N terminus is needed to suppress FGF-induced activation.

Similar content being viewed by others

References

  1. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hunter, T. Signaling—2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 193–200 (2000).

    Article  Google Scholar 

  4. Ueda, Y. et al. Protein kinase C activates the MEK–ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271, 23512–23519 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Formisano, P. et al. Insulin-activated protein kinase Cβ bypasses Ras and stimulates mitogen-activated protein kinase activity and cell proliferation in muscle cells. Mol. Cell. Biol. 20, 6323–6333 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liebmann, C. Regulation of MAP kinase activity by peptide receptor signalling pathway: paradigms of multiplicity. Cell Signal. 13, 777–785 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mason, C.S. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137–2148 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerkhoff, E. & Rapp, U.R. The Ras–Raf relationship: an unfinished puzzle. Adv. Enzyme Regul. 41, 261–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Leevers, S.J. What goes up must come down. Nat. Cell Biol. 1, E10–E11 (1999).

    CAS  PubMed  Google Scholar 

  10. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Krasnow, M.A. Sprouty encodes a novel antagonist of FGF signalling that patterns apical branching of the Drosophila airways. Cell 92, 253–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. de Maximy, A.A. et al. Cloning and expression pattern of a mouse homologue of Drosophila sprouty in the mouse embryo. Mech. Dev. 81, 213–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Minowada, G. et al. Vertebrate sprouty genes are induced by FGF signalling and can cause chondrodysplasia when overexpressed. Development 126, 4465–4475 (1999).

    CAS  PubMed  Google Scholar 

  13. Wakioka, T. et al. Spred is a Sprouty-related suppressor of Ras signalling. Nature 412, 647–651 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Casci, T., Vinos, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signalling. Cell 96, 655–665 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Impagnatiello, M.A. et al. Mammalian Sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J. Cell Biol. 152, 1087–1098 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, S.H., Schloss, D.J., Jarvis, L., Krasnow, M.A. & Swain, J.L. Inhibition of Angiogenesis by a Mouse Sprouty Protein. J. Biol. Chem. 276, 4128–4133 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Egan, J.E., Hall, A.B., Yatsula, B.A. & Bar-Sagi, D. The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc. Natl Acad. Sci. USA 99, 6041–6046 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gross, I., Bassit, B., Benezra, M. & Licht, J.D. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J. Biol. Chem. 276, 46460–46468 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Sasaki, A., Taketomi, T., Wakioka, T., Kato, R. & Yoshimura, A. Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J. Biol. Chem. 276, 36804–36808 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Ozaki, K. et al. ERK pathway positively regulates the expression of Sprouty genes. Biochem. Biophys. Res. Commun. 285, 1084–1088 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kramer, S., Okabe, M., Hacohen, N., Krasnow, M.A. & Hiromi, Y. a common antagonist of FGF and EGF signalling pathways in Drosophila. Development 126, 2515–2525 (1999).

    CAS  PubMed  Google Scholar 

  22. Reich, A., Sapir, A. & Shilo, B. Sprouty is a general inhibitor of receptor tyrosine kinase signalling. Development 126, 4139–4147 (1999).

    CAS  PubMed  Google Scholar 

  23. Wong, E.S. et al. Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J. 21, 4796–4808 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yusoff, P. et al. Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195–3201 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Hanafusa, H., Torii, S., Yasunaga, T. & Nishida, E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat. Cell. Biol. 11, 850–858 (2002).

    Article  Google Scholar 

  26. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim, J., Wong, E.S., Ong, S.H., Yusoff, P., Low, B.C. & Guy, G.R. Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J. Biol. Chem. 275, 32837–32845 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Leeksma, O.C. et al. Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem. 269, 2546–2556 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Yigzaw, Y., Poppleton, H.M., Sreejayan, N., Hassid, A. & Patel, T.B. Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. J Biol Chem. 278, 284–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Sasaki, A. et al. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J. Biol. Chem. 275, 29338–29347 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Nishida for the ERK2 plasmid; S. Ohno for the PKC plasmids; T. Sato and Y. Kaziro for the Ras plasmids; G. Christofori for the antibody against Sprouty2; A. E. Koromilas, Y. Hiromi, S. Kondo, M. Iwanami, M. Ohtubo, A. Takeda and E. Mekada for comments; N. Arifuku for manuscript preparation; and Y. Kawabata and H. Ohgusu for technical assistance. Part of this work was supported by grants from the Ministry of Science, Education, Culture and Sports of Japan, the Japan Research Foundation for Clinical Pharmacology and Human Frontier International Program Organization (to A.Y.), the Fukuoka Cancer Society and the TAKEDA Science Foundation (to A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Yoshimura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Figure S1, Suppression of VEGF-induced, but not EGF-induced Raf1 kinase activity by Sprouty4. (PDF 351 kb)

Figure S2, KDR activates ERK through the PLCã-PKC pathway but not through the Grb2/Ras pathway.

Figure S3, Subcellular localization of Sprouty4 mutants in HeLa cells visualized by immuno-fluorescence microscopy.

Figure S4, S5, Binding of Raf1 to WT and deletion mutants of Sprouty and Spred.

Figure S6, In vitro binding of Sprouty4 and Raf1.

Figure S7, Oligomer formation of WT and RBM-deletion mutant (ΔRBM) Sprouty4.

Figure S8, ΔRBM-Sprouty4 reverted the inhibitory effect of WT-Sprouty4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, A., Taketomi, T., Kato, R. et al. Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5, 427–432 (2003). https://doi.org/10.1038/ncb978

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing