Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and characterization of PPARα ligands in the hippocampus

This article has been updated

Abstract

Peroxisome proliferator–activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands—3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide—in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PPARα is critical in regulating the expression of synaptic molecules in hippocampal neurons.
Figure 2: Identification of endogenous ligands of PPARα in the mouse hippocampus.
Figure 3: Analyses of the interaction of OCT, HEX, and HMB with PPARα by TR-FRET and thermal shift.
Figure 4: Interaction between ligands and PPARα at the molecular level.
Figure 5: Hippocampal ligands of PPARα induce PPRE-driven luciferase activity in primary mouse astrocytes and neurons.
Figure 6: Effect of PPARα ligands on morphological plasticity and calcium oscillation in hippocampal neurons.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 01 November 2016

    In the version of this article initially published online, the traces in panels h and i of Figure 4 appeared as identical. Figure 4h has been replaced with the correct panel in the print, PDF and HTML versions of this article.

References

  1. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    Article  CAS  Google Scholar 

  2. Keller, H. et al. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA 90, 2160–2164 (1993).

    Article  CAS  Google Scholar 

  3. Lehmann, J.M., Lenhard, J.M., Oliver, B.B., Ringold, G.M. & Kliewer, S.A. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406–3410 (1997).

    Article  CAS  Google Scholar 

  4. Gocke, A.R. et al. Transcriptional modulation of the immune response by peroxisome proliferator-activated receptor-α agonists in autoimmune disease. J. Immunol. 182, 4479–4487 (2009).

    Article  CAS  Google Scholar 

  5. Cabrero, A. et al. Increased reactive oxygen species production down-regulates peroxisome proliferator-activated alpha pathway in C2C12 skeletal muscle cells. J. Biol. Chem. 277, 10100–10107 (2002).

    Article  CAS  Google Scholar 

  6. Roy, A. et al. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep. 4, 724–737 (2013).

    Article  CAS  Google Scholar 

  7. Roy, A. et al. HMG-CoA reductase inhibitors bind to PPARα to upregulate neurotrophin expression in the brain and improve memory in mice. Cell Metab. 22, 253–265 (2015).

    Article  CAS  Google Scholar 

  8. Roy, A. & Pahan, K. PPARα signaling in the hippocampus: crosstalk between fat and memory. J. Neuroimmune Pharmacol. 10, 30–34 (2015).

    Article  Google Scholar 

  9. Corbett, G.T., Gonzalez, F.J. & Pahan, K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc. Natl. Acad. Sci. USA 112, 8445–8450 (2015).

    Article  CAS  Google Scholar 

  10. Fanelli, F. et al. Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer's disease. Mol. Neurodegener. 8, 8 (2013).

    Article  CAS  Google Scholar 

  11. Gronemeyer, H., Gustafsson, J.A. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  Google Scholar 

  12. Campolongo, P. et al. Fat-induced satiety factor oleoylethanolamide enhances memory consolidation. Proc. Natl. Acad. Sci. USA 106, 8027–8031 (2009).

    Article  CAS  Google Scholar 

  13. Fu, J., Oveisi, F., Gaetani, S., Lin, E. & Piomelli, D. Oleoylethanolamide, an endogenous PPAR-α agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology 48, 1147–1153 (2005).

    Article  CAS  Google Scholar 

  14. LoVerme, J., La Rana, G., Russo, R., Calignano, A. & Piomelli, D. The search for the palmitoylethanolamide receptor. Life Sci. 77, 1685–1698 (2005).

    Article  CAS  Google Scholar 

  15. Fang, X. et al. 20-carboxy-arachidonic acid is a dual activator of peroxisome proliferator-activated receptors α and γ. Prostaglandins Other Lipid Mediat. 82, 175–184 (2007).

    Article  CAS  Google Scholar 

  16. Narala, V.R. et al. Leukotriene B4 is a physiologically relevant endogenous peroxisome proliferator-activated receptor-α agonist. J. Biol. Chem. 285, 22067–22074 (2010).

    Article  CAS  Google Scholar 

  17. Chen, L. et al. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells. Oncotarget 6, 42530–42540 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. Mattace Raso, G. et al. N-palmitoylethanolamide protects the kidney from hypertensive injury in spontaneously hypertensive rats via inhibition of oxidative stress. Pharmacol. Res. 76, 67–76 (2013).

    Article  CAS  Google Scholar 

  19. Melis, M., Carta, G., Pistis, M. & Banni, S. Physiological role of peroxisome proliferator-activated receptors type α on dopamine systems. CNS Neurol. Disord. Drug Targets 12, 70–77 (2013).

    Article  CAS  Google Scholar 

  20. Chakravarthy, M.V. et al. Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell 138, 476–488 (2009).

    Article  CAS  Google Scholar 

  21. Kauer, J.A., Malenka, R.C. & Nicoll, R.A. NMDA application potentiates synaptic transmission in the hippocampus. Nature 334, 250–252 (1988).

    Article  CAS  Google Scholar 

  22. Mulkey, R.M., Herron, C.E. & Malenka, R.C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055 (1993).

    Article  CAS  Google Scholar 

  23. Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    Article  CAS  Google Scholar 

  24. Roy, A. et al. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase. PLoS One 9, e101883 (2014).

    Article  Google Scholar 

  25. Kainu, T., Wikström, A.C., Gustafsson, J.A. & Pelto-Huikko, M. Localization of the peroxisome proliferator-activated receptor in the brain. Neuroreport 5, 2481–2485 (1994).

    Article  CAS  Google Scholar 

  26. Chakravarthy, M.V. et al. Brain fatty acid synthase activates PPARα to maintain energy homeostasis. J. Clin. Invest. 117, 2539–2552 (2007).

    Article  CAS  Google Scholar 

  27. Fu, J. et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425, 90–93 (2003).

    Article  CAS  Google Scholar 

  28. Cluny, N.L., Keenan, C.M., Lutz, B., Piomelli, D. & Sharkey, K.A. The identification of peroxisome proliferator-activated receptor-α-independent effects of oleoylethanolamide on intestinal transit in mice. Neurogastroenterol. Motil. 21, 420–429 (2009).

    Article  CAS  Google Scholar 

  29. Huitrón-Reséndiz, S., Gombart, L., Cravatt, B.F. & Henriksen, S.J. Effect of oleamide on sleep and its relationship to blood pressure, body temperature, and locomotor activity in rats. Exp. Neurol. 172, 235–243 (2001).

    Article  Google Scholar 

  30. Jana, M., Jana, A., Pal, U. & Pahan, K. A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes, and microglia from the same human fetal brain tissue. Neurochem. Res. 32, 2015–2022 (2007).

    Article  CAS  Google Scholar 

  31. Saha, R.N. et al. TNF-α preconditioning protects neurons via neuron-specific up-regulation of CREB-binding protein. J. Immunol. 183, 2068–2078 (2009).

    Article  CAS  Google Scholar 

  32. Gorini, A., D'Angelo, A. & Villa, R.F. Energy metabolism of synaptosomal subpopulations from different neuronal systems of rat hippocampus: effect of L-acetylcarnitine administration in vivo. Neurochem. Res. 24, 617–624 (1999).

    Article  CAS  Google Scholar 

  33. Saha, R.N. & Pahan, K. Differential regulation of Mn-superoxide dismutase in neurons and astroglia by HIV-1 gp120: Implications for HIV-associated dementia. Free Radic. Biol. Med. 42, 1866–1878 (2007).

    Article  CAS  Google Scholar 

  34. Giulian, D. & Baker, T.J. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178 (1986).

    Article  CAS  Google Scholar 

  35. Dasgupta, S., Jana, M., Liu, X. & Pahan, K. Role of very-late antigen-4 (VLA-4) in myelin basic protein-primed T cell contact-induced expression of proinflammatory cytokines in microglial cells. J. Biol. Chem. 278, 22424–22431 (2003).

    Article  CAS  Google Scholar 

  36. Roy, A., Fung, Y.K., Liu, X. & Pahan, K. Up-regulation of microglial CD11b expression by nitric oxide. J. Biol. Chem. 281, 14971–14980 (2006).

    Article  CAS  Google Scholar 

  37. Im, W., Feig, M. & Brooks, C.L. III. An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys. J. 85, 2900–2918 (2003).

    Article  CAS  Google Scholar 

  38. Ghosh, A. et al. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 104, 18754–18759 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank ChemCore at the Northwestern University Center for Molecular Innovation and Drug Discovery, which is funded by the Chicago Biomedical Consortium. This study was supported by grants from the US National Institutes of Health (AG050431 and NS83054) and a merit award (1I01BX003033-01) from Veterans Affairs to K.P.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and K.P. designed the study. A.R., M.K., and M.J. performed most of the experiments. Y.Y. performed GC-MS. R.K.M. performed in silico structural analysis. C.-H.L. performed TR-FRET analysis. A.R., F.J.G., and K.P. wrote the manuscript.

Corresponding author

Correspondence to Kalipada Pahan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–2 and Supplementary Figures 1–13. (PDF 4080 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Kundu, M., Jana, M. et al. Identification and characterization of PPARα ligands in the hippocampus. Nat Chem Biol 12, 1075–1083 (2016). https://doi.org/10.1038/nchembio.2204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing