Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

Abstract

γ-Aminobutyric acid type A and glycine receptors are the major mediators of fast synaptic inhibition in the human central nervous system and are established drug targets. However, all drugs targeting these receptors bind to the extracellular ligand-binding domain of the receptors, which inherently is associated with perturbation of the basic physiological action. Here we pursue a fundamentally different approach, by instead targeting the intracellular receptor–gephyrin interaction. First, we defined the gephyrin peptide-binding consensus sequence, which facilitated the development of gephyrin super-binding peptides and later effective affinity probes for the isolation of native gephyrin. Next, we demonstrated that fluorescent super-binding peptides could be used to directly visualize inhibitory postsynaptic sites for the first time in conventional and super-resolution microscopy. Finally, we demonstrate that the gephyrin super-binding peptides act as acute intracellular modulators of fast synaptic inhibition by modulating receptor clustering, thus being conceptually novel modulators of inhibitory neurotransmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of action of gephyrin SBPs.
Figure 2: Peptide-array-based profiling of gephyrin.
Figure 3: Design and evaluation of gephyrin super-binding peptides.
Figure 4: Peptide-based visualization of gephyrin in HEK cells and neurons.
Figure 5: SBPs modulate fast synaptic inhibition in living neurons.

Similar content being viewed by others

References

  1. Kim, E.Y. et al. Deciphering the structural framework of glycine receptor anchoring by gephyrin. EMBO J. 25, 1385–1395 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mukherjee, J. et al. The residence time of GABAARs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin. J. Neurosci. 31, 14677–14687 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tretter, V. et al. Molecular basis of the γ-aminobutyric acid A receptor α3 subunit interaction with the clustering protein gephyrin. J. Biol. Chem. 286, 37702–37711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tretter, V. et al. The clustering of GABAA receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor α 2 subunits to gephyrin. J. Neurosci. 28, 1356–1365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowalczyk, S. et al. Direct binding of GABAA receptor β2 and β3 subunits to gephyrin. Eur. J. Neurosci. 37, 544–554 (2013).

    PubMed  Google Scholar 

  6. Maric, H.M. et al. Molecular basis of the alternative recruitment of GABAA versus glycine receptors through gephyrin. Nat. Commun. 5, 5767 (2014).

    CAS  PubMed  Google Scholar 

  7. Maric, H.M., Mukherjee, J., Tretter, V., Moss, S.J. & Schindelin, H. Gephyrin-mediated aminobutyric acid type A and glycine receptor clustering relies on a common binding site. J. Biol. Chem. 286, 42105–42114 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Brady, M.L. & Jacob, T.C. Synaptic localization of α5 GABA(A) receptors via gephyrin interaction regulates dendritic outgrowth and spine maturation. Dev. Neurobiol. 75, 1241–1251 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tyagarajan, S.K. & Fritschy, J.M. Gephyrin: a master regulator of neuronal function? Nat. Rev. Neurosci. 15, 141–156 (2014).

    CAS  PubMed  Google Scholar 

  10. Tretter, V. et al. Gephyrin, the enigmatic organizer at GABAergic synapses. Front. Cell. Neurosci. 6, 23 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fritschy, J.M. & Panzanelli, P. GABAA receptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur. J. Neurosci. 39, 1845–1865 (2014).

    PubMed  Google Scholar 

  12. Choii, G. & Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. 47, e158 (2015).

    CAS  PubMed  Google Scholar 

  13. Craig, A.M., Banker, G., Chang, W., McGrath, M.E. & Serpinskaya, A.S. Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J. Neurosci. 16, 3166–3177 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Specht, C.G. et al. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C. EMBO J. 30, 3842–3853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Specht, C.G. et al. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79, 308–321 (2013).

    CAS  PubMed  Google Scholar 

  16. Dejanovic, B. et al. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol. Med. 7, 1580–1594 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Maas, C. et al. Neuronal cotransport of glycine receptor and the scaffold protein gephyrin. J. Cell Biol. 172, 441–451 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kneussel, M. & Hausrat, T.J. Postsynaptic neurotransmitter receptor reserve pools for synaptic potentiation. Trends Neurosci. 39, 170–182 (2016).

    CAS  PubMed  Google Scholar 

  19. Harvey, R.J., Topf, M., Harvey, K. & Rees, M.I. The genetics of hyperekplexia: more than startle!. Trends Genet. 24, 439–447 (2008).

    CAS  PubMed  Google Scholar 

  20. Dejanovic, B. et al. Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy. Neurobiol. Dis. 67, 88–96 (2014).

    CAS  PubMed  Google Scholar 

  21. Hines, R.M., Davies, P.A., Moss, S.J. & Maguire, J. Functional regulation of GABAA receptors in nervous system pathologies. Curr. Opin. Neurobiol. 22, 552–558 (2012).

    CAS  PubMed  Google Scholar 

  22. Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007).

    CAS  PubMed  Google Scholar 

  23. Ruby, N.F. et al. Hippocampal-dependent learning requires a functional circadian system. Proc. Natl. Acad. Sci. USA 105, 15593–15598 (2008).

    CAS  PubMed  Google Scholar 

  24. Kiewert, C. et al. Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide. Brain Res. 1201, 143–150 (2008).

    CAS  PubMed  Google Scholar 

  25. Defeudis, F.V. Bilobalide and neuroprotection. Pharmacol. Res. 46, 565–568 (2002).

    CAS  PubMed  Google Scholar 

  26. Zhang, X., Li, S., Bao, L., Ye, Y. & Yao, S. Substances for treatment or relief of pain. US patent 20150374705 A1 (2013).

  27. Bach, A. et al. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage. Proc. Natl. Acad. Sci. USA 109, 3317–3322 (2012).

    CAS  PubMed  Google Scholar 

  28. Cook, D.J., Teves, L. & Tymianski, M. Treatment of stroke with a PSD-95 inhibitor in the gyrencephalic primate brain. Nature 483, 213–217 (2012).

    CAS  PubMed  Google Scholar 

  29. Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846–850 (2002).

    CAS  PubMed  Google Scholar 

  30. Thorsen, T.S. et al. Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proc. Natl. Acad. Sci. USA 107, 413–418 (2010).

    CAS  PubMed  Google Scholar 

  31. Bach, A. et al. Structure-activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Org. Biomol. Chem. 8, 4281–4288 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Essrich, C., Lorez, M., Benson, J.A., Fritschy, J.M. & Lüscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 (1998).

    CAS  PubMed  Google Scholar 

  33. Gross, G.G. et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78, 971–985 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gross, G.G. et al. An E3-ligase-based method for ablating inhibitory synapses. Nat. Methods 13, 673–678 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Maric, H.M. et al. Design and synthesis of high-affinity dimeric inhibitors targeting the interactions between gephyrin and inhibitory neurotransmitter receptors. Angew. Chem. Int. Ed. Engl. 54, 490–494 (2015).

    CAS  PubMed  Google Scholar 

  36. Maric, H.M., Kasaragod, V.B. & Schindelin, H. Modulation of gephyrin-glycine receptor affinity by multivalency. ACS Chem. Biol. 9, 2554–2562 (2014).

    CAS  PubMed  Google Scholar 

  37. Pfeiffer, F., Graham, D. & Betz, H. Purification by affinity chromatography of the glycine receptor of rat spinal cord. J. Biol. Chem. 257, 9389–9393 (1982).

    CAS  PubMed  Google Scholar 

  38. Kuhse, J. et al. Phosphorylation of gephyrin in hippocampal neurons by cyclin-dependent kinase CDK5 at Ser-270 is dependent on collybistin. J. Biol. Chem. 287, 30952–30966 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sauer, M. Localization microscopy coming of age: from concepts to biological impact. J. Cell Sci. 126, 3505–3513 (2013).

    CAS  PubMed  Google Scholar 

  40. Ehmann, N. et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5, 4650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, C.Y., Wang, Y.X., Kachar, B. & Petralia, R.S. Differential localization of SAP102 and PSD-95 is revealed in hippocampal spines using super-resolution light microscopy. Commun. Integr. Biol. 4, 104–105 (2011).

    PubMed  PubMed Central  Google Scholar 

  42. Sigal, Y.M., Speer, C.M., Babcock, H.P. & Zhuang, X. Mapping synaptic input fields of neurons with super-resolution imaging. Cell 163, 493–505 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, C.Y. et al. Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses. Mol. Cell. Biol. 35, 1712–1726 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Flores, C.E. et al. Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation. Proc. Natl. Acad. Sci. USA 112, E65–E72 (2015).

    CAS  PubMed  Google Scholar 

  45. Dejanovic, B. & Schwarz, G. Neuronal nitric oxide synthase-dependent S-nitrosylation of gephyrin regulates gephyrin clustering at GABAergic synapses. J. Neurosci. 34, 7763–7768 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Petrini, E.M. et al. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat. Commun. 5, 3921 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dejanovic, B. et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 12, e1001908 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Sander, B. et al. Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states. Acta Crystallogr. D Biol. Crystallogr. 69, 2050–2060 (2013).

    CAS  PubMed  Google Scholar 

  49. Linsalata, A.E., Chen, X., Winters, C.A. & Reese, T.S. Electron tomography on γ-aminobutyric acid-ergic synapses reveals a discontinuous postsynaptic network of filaments. J. Comp. Neurol. 522, 921–936 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oh, W.C., Lutzu, S., Castillo, P.E. & Kwon, H.B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schrader, N. et al. Biochemical characterization of the high affinity binding between the glycine receptor and gephyrin. J. Biol. Chem. 279, 18733–18741 (2004).

    CAS  PubMed  Google Scholar 

  52. Nakane, P.K. & Kawaoi, A. Peroxidase-labeled antibody. A new method of conjugation. J. Histochem. Cytochem. 22, 1084–1091 (1974).

    CAS  PubMed  Google Scholar 

  53. Frank, R. Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232 (1992).

    CAS  Google Scholar 

  54. Buus, S. et al. High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol. Cell. Proteomics 11, 1790–1800 (2012).

    PubMed  PubMed Central  Google Scholar 

  55. Kneussel, M., Hermann, A., Kirsch, J. & Betz, H. Hydrophobic interactions mediate binding of the glycine receptor beta-subunit to gephyrin. J. Neurochem. 72, 1323–1326 (1999).

    CAS  PubMed  Google Scholar 

  56. Fuhrmann, J.C. et al. Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes. J. Neurosci. 22, 5393–5402 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Werner, C. et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain 139, 365–379 (2016).

    PubMed  Google Scholar 

  58. Pfeiffer, F., Simler, R., Grenningloh, G. & Betz, H. Monoclonal antibodies and peptide mapping reveal structural similarities between the subunits of the glycine receptor of rat spinal cord. Proc. Natl. Acad. Sci. USA 81, 7224–7227 (1984).

    CAS  PubMed  Google Scholar 

  59. Schröder, S., Hoch, W., Becker, C.M., Grenningloh, G. & Betz, H. Mapping of antigenic epitopes on the α 1 subunit of the inhibitory glycine receptor. Biochemistry 30, 42–47 (1991).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Breiden for her excellent technical assistance. We thank C. Geis and C. Sommer (Hans–Berger Department of Neurology, Jena University Hospital, Jena, Germany) for providing primary cultures of mouse hippocampal neurons. H.M.M. was supported by the Lundbeck Foundation (R118-A11469). S.D. and M.S. acknowledge funding by the German Research Foundation (SFB/TRR166).

Author information

Authors and Affiliations

Authors

Contributions

H.M.M. and K.S. conceived the project. H.M.M., T.J.H., M.K., S.D., M.S. and K.S. designed the research. Microarrays were designed by H.M.M. and synthesized by the Intavis AG. H.M.M. carried out the μSPOT experiments, peptide synthesis, purification and analysis, the ITC measurements, competition experiments and the protein expression and purification. T.J.H. and H.M.M. carried out the preparation of brain lysates, the HEK cell and neuronal confocal microscopy experiments and their quantification, the pull-down experiments and the western blotting. T.J.H. carried out the toxicological assays as well as the immunohistochemical analysis of the SBP exposed neurons. Electrophysiological experiments were conducted and analyzed by N.O.D. Super resolution imaging and their quantification was carried out by F.N. and S.D. The manuscript was written by H.M.M. and K.S. with input from all authors.

Corresponding authors

Correspondence to Hans Michael Maric or Kristian Strømgaard.

Ethics declarations

Competing interests

The University of Copenhagen has filed a provisional patent application (PA 2015 70783) on peptides described herein with H.M.M. and K.S. as inventors.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–16 and Supplementary Tables 1–4. (PDF 2907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maric, H., Hausrat, T., Neubert, F. et al. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission. Nat Chem Biol 13, 153–160 (2017). https://doi.org/10.1038/nchembio.2246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing