Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons

Abstract

Cyclic AMP (cAMP) and protein kinase A (PKA), classical examples of spatially compartmentalized signaling molecules, are critical axon determinants that regulate neuronal polarity and axon formation, yet little is known about micro-compartmentalization of cAMP and PKA signaling and its role in developing neurons. Here, we revealed that cAMP forms a gradient in developing hippocampal neurons, with higher cAMP levels in more distal regions of the axon compared to other regions of the cell. Interestingly, this cAMP gradient changed according to the developmental stage and depended on proper anchoring of PKA by A-kinase anchoring proteins (AKAPs). Disrupting PKA anchoring to AKAPs increased the cAMP gradient in early-stage neurons and led to enhanced axon elongation. Our results provide new evidence for a local negative-feedback loop, assembled by AKAPs, for the precise control of a growth-stage-dependent cAMP gradient to ensure proper axon growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial regulation of cAMP production in early polarized hippocampal neurons.
Figure 2: Spatial regulation of PKA activity in early polarized hippocampal neurons.
Figure 3: Acute disruption of AKAP anchoring decreases PKA activity in the axon.
Figure 4: Disruption of AKAP anchoring increases axon outgrowth in undifferentiated HNs.
Figure 5: Acute disruption of AKAP anchoring increases cAMP and reveals an axon-directed cAMP gradient in developing HNs.

Similar content being viewed by others

References

  1. Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barnes, A.P. & Polleux, F. Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347–381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Park, A.J. et al. A presynaptic role for PKA in synaptic tagging and memory. Neurobiol. Learn. Mem. 114, 101–112 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pasterkamp, R.J. Getting neural circuits into shape with semaphorins. Nat. Rev. Neurosci. 13, 605–618 (2012).

    CAS  PubMed  Google Scholar 

  5. Cheng, P.L. et al. Self-amplifying autocrine actions of BDNF in axon development. Proc. Natl. Acad. Sci. USA 108, 18430–18435 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Murray, A.J. & Shewan, D.A. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol. Cell. Neurosci. 38, 578–588 (2008).

    CAS  PubMed  Google Scholar 

  7. Muñoz-Llancao, P. et al. Exchange protein directly activated by cAMP (EPAC) regulates neuronal polarization through Rap1B. J. Neurosci. 35, 11315–11329 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Murray, A.J., Tucker, S.J. & Shewan, D.A. cAMP-dependent axon guidance is distinctly regulated by Epac and protein kinase A. J. Neurosci. 29, 15434–15444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Depry, C., Allen, M.D. & Zhang, J. Visualization of PKA activity in plasma membrane microdomains. Mol. Biosyst. 7, 52–58 (2011).

    CAS  PubMed  Google Scholar 

  10. Gervasi, N. et al. Dynamics of protein kinase A signaling at the membrane, in the cytosol, and in the nucleus of neurons in mouse brain slices. J. Neurosci. 27, 2744–2750 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shelly, M. et al. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327, 547–552 (2010).

    CAS  PubMed  Google Scholar 

  12. Nikolaev, V.O. et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

    CAS  PubMed  Google Scholar 

  13. Castro, L.R. et al. Type 4 phosphodiesterase plays different integrating roles in different cellular domains in pyramidal cortical neurons. J. Neurosci. 30, 6143–6151 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. del Puerto, A. et al. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. J. Cell Sci. 125, 176–188 (2012).

    CAS  PubMed  Google Scholar 

  15. Murphy, J.G. et al. AKAP-anchored PKA maintains neuronal L-type calcium channel activity and NFAT transcriptional signaling. Cell Rep. 7, 1577–1588 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Esseltine, J.L. & Scott, J.D. AKAP signaling complexes: pointing towards the next generation of therapeutic targets? Trends Pharmacol. Sci. 34, 648–655 (2013).

    CAS  PubMed  Google Scholar 

  17. Sanderson, J.L. & Dell'Acqua, M.L. AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17, 321–336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Carnegie, G.K. & Scott, J.D. A-kinase anchoring proteins and neuronal signaling mechanisms. Genes Dev. 17, 1557–1568 (2003).

    CAS  PubMed  Google Scholar 

  19. Carr, D.W., Hausken, Z.E., Fraser, I.D., Stofko-Hahn, R.E. & Scott, J.D. Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J. Biol. Chem. 267, 13376–13382 (1992).

    CAS  PubMed  Google Scholar 

  20. Ventra, C. et al. The differential response of protein kinase A to cyclic AMP in discrete brain areas correlates with the abundance of regulatory subunit II. J. Neurochem. 66, 1752–1761 (1996).

    CAS  PubMed  Google Scholar 

  21. Taylor, S.S., Zhang, P., Steichen, J.M., Keshwani, M.M. & Kornev, A.P. PKA: lessons learned after twenty years. Biochim. Biophys. Acta 1834, 1271–1278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gorshkov, K. & Zhang, J. Visualization of cyclic nucleotide dynamics in neurons. Front. Cell. Neurosci. 8, 395 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Lohof, A.M., Quillan, M., Dan, Y. & Poo, M.M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shelly, M., Cancedda, L., Heilshorn, S., Sumbre, G. & Poo, M.M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129, 565–577 (2007).

    CAS  PubMed  Google Scholar 

  25. Song, H.J., Ming, G.L. & Poo, M.M. cAMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997).

    CAS  PubMed  Google Scholar 

  26. Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).

    CAS  PubMed  Google Scholar 

  27. DiPilato, L.M. & Zhang, J. The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics. Mol. Biosyst. 5, 832–837 (2009).

    CAS  PubMed  Google Scholar 

  28. Dessauer, C.W. Adenylyl cyclase-A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol. Pharmacol. 76, 935–941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dao, K.K. et al. Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J. Biol. Chem. 281, 21500–21511 (2006).

    CAS  PubMed  Google Scholar 

  30. Vijayaraghavan, S., Goueli, S.A., Davey, M.P. & Carr, D.W. Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J. Biol. Chem. 272, 4747–4752 (1997).

    CAS  PubMed  Google Scholar 

  31. Bouchard, J.-F. et al. Protein kinase A activation promotes plasma membrane insertion of DCC from an intracellular pool: a novel mechanism regulating commissural axon extension. J. Neurosci. 24, 3040–3050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barnes, A.P. et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129, 549–563 (2007).

    CAS  PubMed  Google Scholar 

  33. Chen, Y. et al. Adenylyl cyclase 6 is selectively regulated by protein kinase A phosphorylation in a region involved in Galphas stimulation. Proc. Natl. Acad. Sci. USA 94, 14100–14104 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Iwami, G. et al. Regulation of adenylyl cyclase by protein kinase A. J. Biol. Chem. 270, 12481–12484 (1995).

    CAS  PubMed  Google Scholar 

  35. Mika, D. & Conti, M. PDE4D phosphorylation: a coincidence detector integrating multiple signaling pathways. Cell. Signal. 28, 719–724 (2016).

    CAS  PubMed  Google Scholar 

  36. Nicol, X., Hong, K.P. & Spitzer, N.C. Spatial and temporal second messenger codes for growth cone turning. Proc. Natl. Acad. Sci. USA 108, 13776–13781 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Neves, S.R. et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133, 666–680 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, L., Gervasi, N. & Girault, J.-A. Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nat. Commun. 6, 6319 (2015).

    CAS  PubMed  Google Scholar 

  39. Shelly, M. & Poo, M.-M. Role of LKB1-SAD/MARK pathway in neuronal polarization. Dev. Neurobiol. 71, 508–527 (2011).

    CAS  PubMed  Google Scholar 

  40. Ramamurthy, S., Chang, E., Cao, Y., Zhu, J. & Ronnett, G.V. AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience 259, 13–24 (2014).

    CAS  PubMed  Google Scholar 

  41. Zhou, Z. et al. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis. Sci. Rep. 5, 19679 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Zhong, H. et al. Subcellular dynamics of type II PKA in neurons. Neuron 62, 363–374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Diering, G.H., Gustina, A.S. & Huganir, R.L. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron 84, 790–805 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Deming, P.B. et al. Anchoring of protein kinase A by ERM (ezrin-radixin-moesin) proteins is required for proper netrin signaling through DCC (deleted in colorectal cancer). J. Biol. Chem. 290, 5783–5796 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dodge-Kafka, K.L. et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437, 574–578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Terrin, A. et al. PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome. J. Cell Biol. 198, 607–621 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gelman, I.H., Tombler, E. & Vargas, J. Jr. A role for SSeCKS, a major protein kinase C substrate with tumour suppressor activity, in cytoskeletal architecture, formation of migratory processes, and cell migration during embryogenesis. Histochem. J. 32, 13–26 (2000).

    CAS  PubMed  Google Scholar 

  48. Piontek, J. & Brandt, R. Differential and regulated binding of cAMP-dependent protein kinase and protein kinase C isoenzymes to gravin in human model neurons: Evidence that gravin provides a dynamic platform for the localization for kinases during neuronal development. J. Biol. Chem. 278, 38970–38979 (2003).

    CAS  PubMed  Google Scholar 

  49. Vardjan, N., Kreft, M. & Zorec, R. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. Glia 62, 566–579 (2014).

    PubMed  Google Scholar 

  50. Soderling, S.H. et al. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc. Natl. Acad. Sci. USA 100, 1723–1728 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawano, Y. et al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell. Biol. 25, 9920–9935 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, Y. et al. Muscle A-kinase anchoring protein-α is an injury-specific signaling scaffold required for neurotrophic- and cyclic adenosine monophosphate-mediated survival. EBioMedicine 2, 1880–1887 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. Lipscombe, D. et al. Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron 1, 355–365 (1988).

    CAS  PubMed  Google Scholar 

  54. Willoughby, D., Wachten, S., Masada, N. & Cooper, D.M. Direct demonstration of discrete Ca2+ microdomains associated with different isoforms of adenylyl cyclase. J. Cell Sci. 123, 107–117 (2010).

    CAS  PubMed  Google Scholar 

  55. Yang, J.H., Polanowska-Grabowska, R.K., Smith, J.S., Shields, C.W., IV & Saucerman, J.J. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling. J. Mol. Cell. Cardiol. 66, 83–93 (2014).

    CAS  PubMed  Google Scholar 

  56. Yonaha, M., Chibazakura, T., Kitajima, S. & Yasukochi, Y. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity. Nucleic Acids Res. 23, 4050–4054 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kleman, A.M., Yuan, J.Y., Aja, S., Ronnett, G.V. & Landree, L.E. Physiological glucose is critical for optimized neuronal viability and AMPK responsiveness in vitro. J. Neurosci. Methods 167, 292–301 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Hand and A. Kolodkin from Johns Hopkins School of Medicine Department of Neuroscience for consultation on various aspects of this manuscript, reagents, and microscopy training. We thank the Malinow lab and I. Hunton at the University California San Diego for use of their lab space and coordinating dissections. We thank Zhang lab members, especially E. Greenwald, for discussions. This work was supported by the UCSD Neuroscience Microscopy Shared Facility Grant P30 NS047101, NSF GRF 1232825 (to K.G.), DGIST Convergence Science Center grant 11-BD-04 (to G.V.R.), R01NS085176 and the Craig H. Neilsen Foundation to (F.-Q.Z.), and NIH R01 DK073368 (to J.Z.).

Author information

Authors and Affiliations

Authors

Contributions

K.G. and S.R. performed the experiments; K.G., S.M., and J.Z. designed the experiments and interpreted the data. K.G., S.M., and J.Z. wrote the manuscript; K.G., S.R., S.M., and J.Z. edited the manuscript. Experiments were performed in the laboratories of G.V.R. and J.Z. F.-Q.Z. and J.Z. came up with the initial concept of the paper.

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–16. (PDF 3055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, K., Mehta, S., Ramamurthy, S. et al. AKAP-mediated feedback control of cAMP gradients in developing hippocampal neurons. Nat Chem Biol 13, 425–431 (2017). https://doi.org/10.1038/nchembio.2298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing