Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila

Abstract

Fragile X syndrome is caused by the functional loss of the fragile X mental retardation 1 (FMR1) gene. Deletion of the FMR1 ortholog in Drosophila melanogaster (Fmr1) recapitulates many phenotypes associated with fragile X syndrome. We have discovered that Fmr1 mutant Drosophila die during development when reared on food containing increased levels of glutamate, which is consistent with the theory that FMR1 loss results in excess glutamate signaling. Using this lethal phenotype, we screened a chemical library of 2,000 compounds and identified nine molecules that rescued the lethality, including three that implicate the GABAergic inhibitory pathway. Indeed, GABA treatment rescued several known Fmr1 mutant phenotypes in flies, including mushroom bodies defects, excess Futsch translation and abnormal male courtship behavior. These data are consistent with GABAergic inhibition of the enhanced excitatory pathway in fragile X syndrome. In addition, our screen reveals that the muscarinic cholinergic receptors may have a role in fragile X syndrome in parallel to the GABAergic pathway. These results point to potential therapeutic approaches for treating fragile X syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A chemical genetic screen to identify small molecules that rescue a Fmr1 mutant phenotype.
Figure 2: GABA treatment rescues glutamate-stimulated toxicity and overexpression of Futsch protein associated with Fmr1 mutants.
Figure 3: GABA treatment rescues β-lobe midline crossing in MBs of Fmr1 mutant flies.
Figure 4: GABA treatment rescues naive courtship behavior in Fmr1 males.
Figure 5: GABAergic pathway is independent of mAChR pathway in rescuing Fmr1-mediated lethality.

References

  1. Penagarikano, O., Mulle, J.G. & Warren, S.T. The pathophysiology of fragile x syndrome. Annu. Rev. Genomics Hum. Genet. 8, 109–129 (2007).

    Article  CAS  Google Scholar 

  2. Feng, Y. et al. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell 1, 109–118 (1997).

    Article  CAS  Google Scholar 

  3. Todd, P.K., Mack, K.J. & Malter, J.S. The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc. Natl. Acad. Sci. USA 100, 14374–14378 (2003).

    Article  CAS  Google Scholar 

  4. Brown, V. et al. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107, 477–487 (2001).

    Article  CAS  Google Scholar 

  5. Darnell, J.C. et al. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107, 489–499 (2001).

    Article  CAS  Google Scholar 

  6. Zhang, Y.Q. et al. The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis. Dev. Biol. 270, 290–307 (2004).

    Article  CAS  Google Scholar 

  7. Lu, R. et al. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc. Natl. Acad. Sci. USA 101, 15201–15206 (2004).

    Article  CAS  Google Scholar 

  8. Jin, P., Alisch, R.S. & Warren, S.T. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6, 1048–1053 (2004).

    Article  CAS  Google Scholar 

  9. Bear, M.F., Huber, K.M. & Warren, S.T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    Article  CAS  Google Scholar 

  10. Vanderklish, P.W. & Edelman, G.M. Differential translation and fragile X syndrome. Genes Brain Behav. 4, 360–384 (2005).

    Article  CAS  Google Scholar 

  11. Yan, Q.J., Rammal, M., Tranfaglia, M. & Bauchwitz, R.P. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066 (2005).

    Article  CAS  Google Scholar 

  12. McBride, S.M. et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile x syndrome. Neuron 45, 753–764 (2005).

    Article  CAS  Google Scholar 

  13. Gao, F.B. Understanding fragile X syndrome: insights from retarded flies. Neuron 34, 859–862 (2002).

    Article  CAS  Google Scholar 

  14. Wan, L., Dockendorff, T.C., Jongens, T.A. & Dreyfuss, G. Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol. Cell. Biol. 20, 8536–8547 (2000).

    Article  CAS  Google Scholar 

  15. Lee, A. et al. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130, 5543–5552 (2003).

    Article  CAS  Google Scholar 

  16. Zhang, Y.Q. et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107, 591–603 (2001).

    Article  CAS  Google Scholar 

  17. Reeve, S.P. et al. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr. Biol. 15, 1156–1163 (2005).

    Article  CAS  Google Scholar 

  18. Morales, J. et al. Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34, 961–972 (2002).

    Article  CAS  Google Scholar 

  19. Dockendorff, T.C. et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973–984 (2002).

    Article  CAS  Google Scholar 

  20. Michel, C.I., Kraft, R. & Restifo, L.L. Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J. Neurosci. 24, 5798–5809 (2004).

    Article  Google Scholar 

  21. Pan, L., Zhang, Y.Q., Woodruff, E. & Broadie, K. The Drosophila fragile x gene negatively regulates neuronal elaboration and synaptic differentiation. Curr. Biol. 14, 1863–1870 (2004).

    Article  CAS  Google Scholar 

  22. Krogsgaard-Larsen, P., Frolund, B. & Frydenvang, K. GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr. Pharm. Des. 6, 1193–1209 (2000).

    Article  CAS  Google Scholar 

  23. Reith, M.E., Zhen, J. & Chen, N. The importance of company: Na+ and Cl– influence substrate interaction with SLC6 transporters and other proteins. Handb. Exp. Pharmacol. 75–93 (2006).

  24. Weinberger, N.M. Food for thought: honeybee foraging, memory, and acetylcholine. Sci. STKE 2006, pe23 (2006).

    PubMed  Google Scholar 

  25. Ismail, N., Robinson, G.E. & Fahrbach, S.E. Stimulation of muscarinic receptors mimics experience-dependent plasticity in the honey bee brain. Proc. Natl. Acad. Sci. USA 103, 207–211 (2006).

    Article  CAS  Google Scholar 

  26. Root, C.M., Semmelhack, J.L., Wong, A.M., Flores, J. & Wang, J.W. Propagation of olfactory information in Drosophila. Proc. Natl. Acad. Sci. USA 104, 11826–11831 (2007).

    Article  CAS  Google Scholar 

  27. Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  Google Scholar 

  28. Heisenberg, M. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4, 266–275 (2003).

    Article  CAS  Google Scholar 

  29. Hall, J.C. The mating of a fly. Science 264, 1702–1714 (1994).

    Article  CAS  Google Scholar 

  30. Siegel, R.W. & Hall, J.C. Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc. Natl. Acad. Sci. USA 76, 3430–3434 (1979).

    Article  CAS  Google Scholar 

  31. Bell, K.F. & Claudio Cuello, A. Altered synaptic function in Alzheimer's disease. Eur. J. Pharmacol. 545, 11–21 (2006).

    Article  CAS  Google Scholar 

  32. Desai, U.A. et al. Biologically active molecules that reduce polyglutamine aggregation and toxicity. Hum. Mol. Genet. 15, 2114–2124 (2006).

    Article  CAS  Google Scholar 

  33. Min, J. et al. Forward chemical genetic approach identifies new role for GAPDH in insulin signaling. Nat. Chem. Biol. 3, 55–59 (2007).

    Article  CAS  Google Scholar 

  34. Moy, T.I. et al. Identification of novel antimicrobials using a live-animal infection model. Proc. Natl. Acad. Sci. USA 103, 10414–10419 (2006).

    Article  CAS  Google Scholar 

  35. Segalat, L. Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem. Biol. 2, 231–236 (2007).

    Article  CAS  Google Scholar 

  36. Hefco, V. et al. The interaction between the cholinergic and dopaminergic system in learning and memory process in rats. Rom. J. Physiol. 41, 21–30 (2004).

    CAS  PubMed  Google Scholar 

  37. Pratt, W.E. & Kelley, A.E. Nucleus accumbens acetylcholine regulates appetitive learning and motivation for food via activation of muscarinic receptors. Behav. Neurosci. 118, 730–739 (2004).

    Article  CAS  Google Scholar 

  38. Tzavara, E.T. et al. Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol. Psychiatry 8, 673–679 (2003).

    Article  CAS  Google Scholar 

  39. Degroot, A., Salhoff, C., Davis, R.J. & Nomikos, G.G. Genetic deletion of CB1 receptors improves non-associative learning. Behav. Brain Res. 162, 161–164 (2005).

    Article  CAS  Google Scholar 

  40. Lozano, V.C., Armengaud, C. & Gauthier, M. Memory impairment induced by cholinergic antagonists injected into the mushroom bodies of the honeybee. J. Comp. Physiol. [A] 187, 249–254 (2001).

    Article  CAS  Google Scholar 

  41. D'Hulst, C. et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 1121, 238–245 (2006).

    Article  CAS  Google Scholar 

  42. Gantois, I. et al. Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol. Dis. 21, 346–357 (2006).

    Article  CAS  Google Scholar 

  43. El Idrissi, A. et al. Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci. Lett. 377, 141–146 (2005).

    Article  CAS  Google Scholar 

  44. Selby, L., Zhang, C. & Sun, Q.Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412, 227–232 (2007).

    Article  CAS  Google Scholar 

  45. Segal, M., Greenberger, V. & Korkotian, E. Formation of dendritic spines in cultured striatal neurons depends on excitatory afferent activity. Eur. J. Neurosci. 17, 2573–2585 (2003).

    Article  Google Scholar 

  46. Brotz, T.M., Bochenek, B., Aronstein, K., Ffrench-Constant, R.H. & Borst, A. γ-Aminobutyric acid receptor distribution in the mushroom bodies of a fly (Calliphora erythrocephala): a functional subdivision of Kenyon cells? J. Comp. Neurol. 383, 42–48 (1997).

    Article  CAS  Google Scholar 

  47. Strambi, C. et al. Immunocytochemical mapping of an RDL-like GABA receptor subunit and of GABA in brain structures related to learning and memory in the cricket Acheta domesticus. Learn. Mem. 5, 78–89 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamazaki, Y., Nishikawa, M. & Mizunami, M. Three classes of GABA-like immunoreactive neurons in the mushroom body of the cockroach. Brain Res. 788, 80–86 (1998).

    Article  CAS  Google Scholar 

  49. Schurmann, F.W., Ottersen, O.P. & Honegger, H.W. Glutamate-like immunoreactivity marks compartments of the mushroom bodies in the brain of the cricket. J. Comp. Neurol. 418, 227–239 (2000).

    Article  CAS  Google Scholar 

  50. Villella, A. & Hall, J.C. Courtship anomalies caused by doublesex mutations in Drosophila melanogaster. Genetics 143, 331–344 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. L'Hernault, T. Kroft, H. Liu and C. Yu for assistance. We thank Y. Feng and the members of the Warren and Jin labs for their assistance and critical comments. We thank T.A. Jongens (University of Pennsylvania) for providing the transgenic fly carrying a copy of the Fmr1 transgene. We also thank the National Institute of Child Health and Human Development (NICHD) Developmental Studies Hybridoma Bank at the University of Iowa for antibodies. S.C. is supported by a Fragile X Research Foundation (FRAXA) postdoctoral grant, and S.M.B. is supported by a Frederick Gardner Cottrell Fellowship at Emory University. This work was supported by US National Institutes of Health grants HD020521 and HD24064 to S.T.W. and by the Colonial Oaks Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.C. designed and performed experiments, analyzed data and wrote the manuscript; S.M.B. performed experiments, analyzed data and revised the manuscript; D.C.Z. and P.J. made initial observations; Z.L. and C.H. conducted the chemical analysis; P.J. designed the research and provided fly strains; S.T.W. designed and supervised the research, wrote and revised the manuscript and obtained funding for the research.

Corresponding author

Correspondence to Stephen T Warren.

Ethics declarations

Competing interests

S.T.W. declares he is chair of the Scientific Advisory Board of Seaside Therapeutics, Inc. The remaining authors declare that they have no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1 and 2 (PDF 779 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S., Bray, S., Li, Z. et al. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4, 256–263 (2008). https://doi.org/10.1038/nchembio.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing