Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stochastic kinetics of intracellular huntingtin aggregate formation

Abstract

Neurodegeneration in Huntington disease is described by neuronal loss in which the probability of cell death remains constant with time1. However, the quantitative connection between the kinetics of cell death and the molecular mechanism initiating neurodegeneration remains unclear. One hypothesis is that nucleation of protein aggregates containing exon I fragments of the mutant huntingtin protein (mhttex1), which contains an expanded polyglutamine region in patients with the disease, is the explanation for the infrequent but steady occurrence of neuronal death, resulting in adult onset of the disease2. Recent in vitro evidence suggests that sufficiently long polyglutamine peptides undergo a unimolecular conformational change to form a nucleus that seeds aggregation3. Here we use this nucleation mechanism as the basis to derive a stochastic mathematical model describing the probability of aggregate formation in cells as a function of time and mhttex1 protein concentration, and validate the model experimentally. These findings suggest that therapeutic strategies for Huntington disease predicated on reducing the rate of mhttex1 aggregation need only make modest reductions in huntingtin expression level to substantially increase the delay time until aggregate formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothesized mechanism of httex1 aggregate formation3 (Models 1, 1a and 1b in Supplementary Methods).
Figure 2: FACS sorting and fluorescence microscopy of cell populations were used to determine rates of aggregate formation.
Figure 3: Rate of httex1-GFP aggregate formation as a function of time, concentration and polyglutamine length.
Figure 4: Simulated fraction of neurons that do not experience an aggregate nucleation event as a function of concentration (10, 30, 100 or 300 nM) and age for httex1Q47, based on Model 1a or 2, and assuming neurons of volume equivalent to cultured ST14A cells.

Similar content being viewed by others

References

  1. Clarke, G. et al. A one-hit model of cell death in inherited neuronal degenerations. Nature 406, 195–199 (2000).

    Article  CAS  Google Scholar 

  2. Perutz, M.F. & Windle, A.H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143–144 (2001).

    Article  CAS  Google Scholar 

  3. Chen, S., Ferrone, F.A. & Wetzel, R. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA 99, 11884–11889 (2002).

    Article  CAS  Google Scholar 

  4. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  5. Arrasate, M., Mitra, S., Schweitzer, E.S., Segal, M.R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  6. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  Google Scholar 

  7. Garcia, M., Charvin, D. & Caboche, J. Expanded huntingtin activates the c-Jun terminal kinase/c-Jun pathway prior to aggregate formation in striatal neurons in culture. Neuroscience 127, 859–870 (2004).

    Article  CAS  Google Scholar 

  8. Meriin, A.B. et al. Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004 (2002).

    Article  CAS  Google Scholar 

  9. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M.E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  10. Nucifora, F.C., Jr. et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  Google Scholar 

  11. Lomakin, A., Teplow, D.B., Kirschner, D.A. & Benedek, G.B. Kinetic theory of fibrillogenesis of amyloid β-protein. Proc. Natl. Acad. Sci. USA 94, 7942–7947 (1997).

    Article  CAS  Google Scholar 

  12. Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

    Article  CAS  Google Scholar 

  13. Hofrichter, J., Ross, P.D. & Eaton, W.A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc. Natl. Acad. Sci. USA 71, 4864–4868 (1974).

    Article  CAS  Google Scholar 

  14. Jarrett, J.T. & Lansbury, P.T., Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  15. Cattaneo, E. & Conti, L. Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. J. Neurosci. Res. 53, 223–234 (1998).

    Article  CAS  Google Scholar 

  16. Arrasate, M. & Finkbeiner, S. Automated microscope system for determining factors that predict neuronal fate. Proc. Natl. Acad. Sci. USA 102, 3840–3845 (2005).

    Article  CAS  Google Scholar 

  17. Renshaw, E. Modelling Biological Populations in Space and Time (Cambridge University Press, Cambridge, UK, 1991).

    Book  Google Scholar 

  18. Szabo, A. Fluctuations in the polymerization of sickle hemoglobin. A simple analytic model. J. Mol. Biol. 199, 539–542 (1988).

    Article  CAS  Google Scholar 

  19. Cao, Z. & Ferrone, F.A. Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method. Biophys. J. 72, 343–352 (1997).

    Article  CAS  Google Scholar 

  20. Bhattacharyya, A.M., Thakur, A.K. & Wetzel, R. Polyglutamine aggregation nucleation: thermodynamics of a highly unfavorable protein folding reaction. Proc. Natl. Acad. Sci. USA 102, 15400–15405 (2005).

    Article  CAS  Google Scholar 

  21. Shtilerman, M.D., Ding, T.T. & Lansbury, P.T., Jr. Molecular crowding accelerates fibrillization of α-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson's disease? Biochemistry 41, 3855–3860 (2002).

    Article  CAS  Google Scholar 

  22. Hatters, D.M., Minton, A.P. & Howlett, G.J. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C–II. J. Biol. Chem. 277, 7824–7830 (2002).

    Article  CAS  Google Scholar 

  23. Ivanova, M., Jasuja, R., Kwong, S., Briehl, R.W. & Ferrone, F.A. Nonideality and the nucleation of sickle hemoglobin. Biophys. J. 79, 1016–1022 (2000).

    Article  CAS  Google Scholar 

  24. Minton, A.P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001).

    Article  CAS  Google Scholar 

  25. Slow, E.J. et al. Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc. Natl. Acad. Sci. USA 102, 11402–11407 (2005).

    Article  CAS  Google Scholar 

  26. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo. Proc. Natl. Acad. Sci. USA 102, 892–897 (2005).

    Article  CAS  Google Scholar 

  28. Kazantsev, A. et al. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat. Genet. 30, 367–376 (2002).

    Article  CAS  Google Scholar 

  29. Colby, D.W. et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl. Acad. Sci. USA 101, 17616–17621 (2004).

    Article  CAS  Google Scholar 

  30. Gu, X. et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 46, 433–444 (2005).

    Article  CAS  Google Scholar 

  31. Harper, S.Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl. Acad. Sci. USA 102, 5820–5825 (2005).

    Article  CAS  Google Scholar 

  32. Nance, M.A. & Myers, R.H. Juvenile onset Huntington's disease—clinical and research perspectives. Ment. Retard. Dev. Disabil. Res. Rev. 7, 153–157 (2001).

    Article  CAS  Google Scholar 

  33. Gusella, J.F. & MacDonald, M.E. Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1, 109–115 (2000).

    Article  CAS  Google Scholar 

  34. Wexler, N.S. et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc. Natl. Acad. Sci. USA 101, 3498–3503 (2004).

    Article  CAS  Google Scholar 

  35. Squitieri, F. et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain 126, 946–955 (2003).

    Article  Google Scholar 

  36. Krobitsch, S. & Lindquist, S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594 (2000).

    Article  CAS  Google Scholar 

  37. Larson, H.J. Introduction to Probability Theory and Statistical Inference (Wiley, New York, 1982).

    Google Scholar 

  38. Rosenblatt, A., Ranen, N.G., Nance, M.A. & Paulsen, J.S. Physician's Guide to the Management of Huntington's Disease 2nd edn. http://www.hdsa.org/site/DocServer/Physicians_Guide_JAT_conversion_color_5-4-05.pdf?docID=241 (Huntington's Disease Society of America, New York, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank the US National Science Foundation Graduate Research Fellowship program (D.W.C.), the Hereditary Disease Foundation and the HighQ Foundation for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Dane Wittrup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Concentration of httex1Q72-GFP in individual cells during the 18 hour period following sorting, measured by time-lapse fluorescence microscopy. (PDF 456 kb)

Supplementary Methods (PDF 1461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colby, D., Cassady, J., Lin, G. et al. Stochastic kinetics of intracellular huntingtin aggregate formation. Nat Chem Biol 2, 319–323 (2006). https://doi.org/10.1038/nchembio792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing