Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency

Abstract

Collagen VI is an extracellular matrix protein that forms a microfilamentous network in skeletal muscles and other organs1,2,3. Inherited mutations in genes encoding collagen VI in humans cause two muscle diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy4,5. We previously generated collagen VI–deficient (Col6a1−/−) mice and showed that they have a muscle phenotype that strongly resembles Bethlem myopathy6. The pathophysiological defects and mechanisms leading to the myopathic disorder were not known. Here we show that Col6a1−/− muscles have a loss of contractile strength associated with ultrastructural alterations of sarcoplasmic reticulum (SR) and mitochondria and spontaneous apoptosis. We found a latent mitochondrial dysfunction in myofibers of Col6a1−/− mice on incubation with the selective F1FO-ATPase inhibitor oligomycin, which caused mitochondrial depolarization, Ca2+ deregulation and increased apoptosis. These defects were reversible, as they could be normalized by plating Col6a1−/− myofibers on collagen VI or by addition of cyclosporin A (CsA), the inhibitor of mitochondrial permeability transition pore (PTP). Treatment of Col6a1−/− mice with CsA rescued the muscle ultrastructural defects and markedly decreased the number of apoptotic nuclei in vivo. These findings indicate that collagen VI myopathies have an unexpected mitochondrial pathogenesis that could be exploited for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of contractile strength in Col6a1−/− muscles.
Figure 2: Ultrastructural defects in collagen VI–deficient muscles.
Figure 3: Altered mitochondrial response to oligomycin in collagen VI–deficient myofibers.
Figure 4: Altered [Ca2+]c response to oligomycin in collagen VI–deficient myofibers.
Figure 5: Nuclear apoptosis in histological sections and cultured fibers from Col6a1−/− muscles.
Figure 6: In vivo administration of CsA prevents nuclear apoptosis and ultrastructural defects in collagen VI–deficient muscles.

Similar content being viewed by others

References

  1. Keene, D.R., Engvall, E. & Glanville, R.W. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell Biol. 107, 1995–2006 (1988).

    Article  CAS  Google Scholar 

  2. Bonaldo, P., Russo, V., Bucciotti, F., Doliana, R. & Colombatti, A. Structural and functional features of the α3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry 29, 1245–1254 (1990).

    Article  CAS  Google Scholar 

  3. Timpl, R. & Chu, M.L. Microfibrillar collagen type VI. in Extracellular Matrix Assembly and Structure (eds. Yurchenco, P.D., Birk, D.E. & Mecham, R.P.) 208–242 (Academic, Orlando, 1994).

    Google Scholar 

  4. Jöbsis, G.J. et al. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat. Genet. 14, 113–115 (1996).

    Article  Google Scholar 

  5. Camacho Vanegas, O. et al. Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc. Natl. Acad. Sci. USA 98, 7516–7521 (2001).

    Article  CAS  Google Scholar 

  6. Bonaldo, P. et al. Collagen VI deficiency induces early onset myopathy in the mouse: an animal model for Bethlem myopathy. Hum. Mol. Genet. 7, 2135–2140 (1998).

    Article  CAS  Google Scholar 

  7. Plant, D.R. & Lynch, G.S. Excitation-contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice. J. Physiol. 543, 169–176 (2002).

    Article  CAS  Google Scholar 

  8. Irwin, W. et al. Bupivacaine myotoxicity is mediated by mitochondria. J. Biol. Chem. 277, 12221–12227 (2002).

    Article  CAS  Google Scholar 

  9. Nicholls, D.G. & Ward, M.W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 23, 166–174 (2000).

    Article  CAS  Google Scholar 

  10. D'hahan, N. et al. Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP. Proc. Natl. Acad. Sci. USA 96, 12162–12167 (1999).

    Article  CAS  Google Scholar 

  11. Gugliucci, A. et al. Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J. Biol. Chem. 277, 31789–31795 (2002).

    Article  CAS  Google Scholar 

  12. Bernardi, P., Petronilli, V., Di Lisa, F. & Forte, M. A mitochondrial perspective on cell death. Trends Biochem. Sci. 26, 112–117 (2001).

    Article  CAS  Google Scholar 

  13. Griffiths, E.J. & Halestrap, A.P. Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Biochem. J. 274, 611–614 (1991).

    Article  CAS  Google Scholar 

  14. Bowser, D.N., Minamikawa, T., Nagley, P. & Williams, D.A. Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells. Biophys. J. 75, 2004–2014 (1998).

    Article  CAS  Google Scholar 

  15. Bowser, D.N., Petrou, S., Panchal, R.G., Smart, M.L. & Williams, D.A. Release of mitochondrial Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake. FASEB J. 16, 1105–1107 (2002).

    Article  CAS  Google Scholar 

  16. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. A new generation of Ca2+ indicators with greatly improved fluorescent properties. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  17. Zhao, F., Li, P., Chen, S.R., Louis, C.F. & Fruen, B.R. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. J. Biol. Chem. 276, 13810–13816 (2001).

    Article  CAS  Google Scholar 

  18. Robert, V. et al. Alteration in calcium handling at the subcellular level in mdx myotubes. J. Biol. Chem. 276, 4647–4651 (2001).

    Article  CAS  Google Scholar 

  19. Tews, D.S. Apoptosis and muscle fibre loss in neuromuscular disorders. Neuromuscul. Disord. 12, 613–622 (2002).

    Article  CAS  Google Scholar 

  20. Klöhn, P.C. et al. Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc. Natl. Acad. Sci. USA 100, 10014–10019 (2003).

    Article  Google Scholar 

  21. Blake, D.J., Weir, A., Newey, S.E. & Davies, K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82, 291–329 (2002).

    Article  CAS  Google Scholar 

  22. Howell, S.J. & Doane, K.J. Type VI collagen increases cell survival and prevents anti-β1 integrin-mediated apoptosis. Exp. Cell Res. 241, 230–241 (1998).

    Article  CAS  Google Scholar 

  23. Rühl, M. et al. Soluble collagen VI drives serum-starved fibroblasts through S phase and prevents apoptosis via down-regulation of Bax. J. Biol. Chem. 274, 34361–34368 (1999).

    Article  Google Scholar 

  24. Werner, E. & Werb, Z. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. J. Cell Biol. 158, 357–368 (2002).

    Article  CAS  Google Scholar 

  25. Rossi, R., Bottinelli, R., Sorrentino, V. & Reggiani, C. Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscles. Am. J. Physiol. 281, C595–C602 (2001).

    Article  Google Scholar 

  26. Germinario, E. el al. Early changes of type 2B fibers after denervation of rat EDL skeletal muscle. J. Appl. Physiol. 92, 2045–2052 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Pozzan and R. Betto for advice about Ca2+ measurements and fiber cultures, M. Ghidotti for animal husbandry and A. Colombatti for critical reading of manuscript. This work was supported by grants from Telethon, Italian MIUR, European Project Myocluster and Italian Health Ministry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Bernardi or Paolo Bonaldo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irwin, W., Bergamin, N., Sabatelli, P. et al. Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35, 367–371 (2003). https://doi.org/10.1038/ng1270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing