Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced tonic GABAA inhibition in typical absence epilepsy

Abstract

The cellular mechanisms underlying typical absence seizures, which characterize various idiopathic generalized epilepsies, are not fully understood, but impaired γ-aminobutyric acid (GABA)-ergic inhibition remains an attractive hypothesis. In contrast, we show here that extrasynaptic GABAA receptor–dependent 'tonic' inhibition is increased in thalamocortical neurons from diverse genetic and pharmacological models of absence seizures. Increased tonic inhibition is due to compromised GABA uptake by the GABA transporter GAT-1 in the genetic models tested, and GAT-1 is crucial in governing seizure genesis. Extrasynaptic GABAA receptors are a requirement for seizures in two of the best characterized models of absence epilepsy, and the selective activation of thalamic extrasynaptic GABAA receptors is sufficient to elicit both electrographic and behavioral correlates of seizures in normal rats. These results identify an apparently common cellular pathology in typical absence seizures that may have epileptogenic importance and highlight potential therapeutic targets for the treatment of absence epilepsy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased tonic GABAA inhibition in genetic and pharmacological models of absence seizures.
Figure 2: Aberrant GABA uptake by GAT-1 underlies enhanced tonic inhibition in GAERS, stargazer and lethargic.
Figure 3: Role of thalamic GAT-1 in the generation of SWDs.
Figure 4: δ subunit–knockout mice show reduced tonic inhibition and reduced sensitivity to γ-butyrolactone (GBL)-induced SWDs.
Figure 5: Spontaneous absence seizures in GAERS are reduced by intrathalamic injection of δ subunit–specific antisense oligodeoxynucleotides (ODNs).
Figure 6: Selective activation of thalamic eGABAARs initiates absence seizures in normal Wistar rats.

References

  1. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 30, 389–399 (1989).

  2. Crunelli, V. & Leresche, N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat. Rev. Neurosci. 3, 371–382 (2002).

    Article  CAS  Google Scholar 

  3. McCormick, D.A. & Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846 (2001).

    Article  CAS  Google Scholar 

  4. Blumenfeld, H. Cellular and network mechanisms of spike-wave seizures. Epilepsia 46 Suppl 9, 21–33 (2005).

    Article  CAS  Google Scholar 

  5. von Krosigk, M., Bal, T. & McCormick, D.A. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361–364 (1993).

    Article  CAS  Google Scholar 

  6. Huntsman, M.M., Porcello, D.M., Homanics, G.E., DeLorey, T.M. & Huguenard, J.R. Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283, 541–543 (1999).

    Article  CAS  Google Scholar 

  7. Wallace, R.H. et al. Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28, 49–52 (2001).

    CAS  PubMed  Google Scholar 

  8. Kananura, C. et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch. Neurol. 59, 1137–1141 (2002).

    Article  Google Scholar 

  9. Maljevic, S. et al. A mutation in the GABAA receptor α1-subunit is associated with absence epilepsy. Ann. Neurol. 59, 983–987 (2006).

    Article  CAS  Google Scholar 

  10. Macdonald, R.L., Gallagher, M.J., Feng, H.-J. & Kang, J. GABAA receptor epilepsy mutations. Biochem. Pharmacol. 68, 1497–1506 (2004).

    Article  CAS  Google Scholar 

  11. Caddick, S.J. et al. Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4lh) and tottering (Cacna1atg) mouse thalami. J. Neurophysiol. 81, 2066–2074 (1999).

    Article  CAS  Google Scholar 

  12. Bessaïh, T. et al. Nucleus-specific abnormalities of GABAergic synaptic transmission in a genetic model of absence seizures. J. Neurophysiol. 96, 3074–3081 (2006).

    Article  Google Scholar 

  13. Tan, H.O. et al. Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc. Natl. Acad. Sci. USA 104, 17536–17541 (2007).

    Article  CAS  Google Scholar 

  14. Hosford, D.A., Wang, Y. & Cao, Z. Differential effects mediated by GABAA receptors in thalamic nuclei in lh/lh model of absence seizures. Epilepsy Res. 27, 55–65 (1997).

    Article  CAS  Google Scholar 

  15. Hosford, D.A. & Wang, Y. Utility of the lethargic (lh/lh) mouse model of absence seizures in predicting the effects of lamotrigine, vigabatrin, tiagabine, gabapentin and topiramate against human absence seizures. Epilepsia 38, 408–414 (1997).

    Article  CAS  Google Scholar 

  16. Danober, L., Deransart, C., Depaulis, A., Vergnes, M. & Marescaux, C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55, 27–57 (1998).

    Article  CAS  Google Scholar 

  17. Perucca, E., Gram, L., Avanzini, G. & Dulac, O. Antiepileptic drugs as a cause of worsening seizures. Epilepsia 39, 5–17 (1998).

    Article  CAS  Google Scholar 

  18. Ettinger, A.B. et al. Two cases of nonconvulsive status epilepticus in association with tiagabine therapy. Epilepsia 40, 1159–1162 (1999).

    Article  CAS  Google Scholar 

  19. Farrant, M. & Nusser, Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 6, 215–229 (2005).

    Article  CAS  Google Scholar 

  20. Glykys, J. & Mody, I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56, 763–770 (2007).

    Article  CAS  Google Scholar 

  21. Belelli, D., Peden, D.R., Rosahl, T.W., Wafford, K.A. & Lambert, J.J. Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J. Neurosci. 25, 11513–11520 (2005).

    Article  CAS  Google Scholar 

  22. Cope, D.W., Hughes, S.W. & Crunelli, V. GABAA receptor–mediated tonic inhibition in thalamic neurons. J. Neurosci. 25, 11553–11563 (2005).

    Article  CAS  Google Scholar 

  23. Jia, F. et al. An extrasynaptic GABAA receptor mediates tonic inhibition in thalamic VB neurons. J. Neurophysiol. 94, 4491–4501 (2005).

    Article  CAS  Google Scholar 

  24. Bright, D.P., Aller, M.I. & Brickley, S.G. Synaptic release generates a tonic GABAA receptor–mediated conductance that modulates burst precision in thalamic relay neurons. J. Neurosci. 27, 2560–2569 (2007).

    Article  CAS  Google Scholar 

  25. Laurie, D.J., Wisden, W. & Seeburg, P.H. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172 (1992).

    Article  CAS  Google Scholar 

  26. Fletcher, C.F. & Frankel, W.N. Ataxic mouse mutants and molecular mechanisms of absence epilepsy. Hum. Mol. Genet. 8, 1907–1912 (1999).

    Article  CAS  Google Scholar 

  27. Snead, O.C., III. The γ-hydroxybutyrate model of absence seizures: correlation of regional brain levels of γ-hydroxybutyric acid and γ-butyrolactone with spike wave discharges. Neuropharmacology 30, 161–167 (1991).

    Article  CAS  Google Scholar 

  28. Banerjee, P.K., Hirsch, E. & Snead, O.C., III. γ-hydroxybutyric acid induced spike and wave discharges in rats: relation to high-affinity [3H]γ-hydroxybutyric acid binding sites in the thalamus and cortex. Neuroscience 56, 11–21 (1993).

    Article  CAS  Google Scholar 

  29. Fariello, R.G. & Golden, G.T. The THIP-induced model of bilateral synchronous spike and wave in rodents. Neuropharmacology 26, 161–165 (1987).

    Article  CAS  Google Scholar 

  30. Le Feuvre, Y., Fricker, D. & Leresche, N. GABAA receptor–mediated IPSCs in rat thalamic sensory nuclei: patterns of discharge and tonic modulation by GABAB autoreceptors. J. Physiol. (Lond.) 502, 91–104 (1997).

    Article  CAS  Google Scholar 

  31. Richards, D.A., Lemos, T., Whitton, P.S. & Bowery, N.G. Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J. Neurochem. 65, 1674–1680 (1995).

    Article  CAS  Google Scholar 

  32. Sutch, R.J., Davies, C.C. & Bowery, N.G. GABA release and uptake measured in crude synaptosomes from Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Neurochem. Int. 34, 415–425 (1999).

    Article  CAS  Google Scholar 

  33. Borden, L.A. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem. Int. 29, 335–356 (1996).

    Article  CAS  Google Scholar 

  34. De Biasi, S., Vitellaro-Zuccarello, L. & Brecha, N.C. Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization. Neuroscience 83, 815–828 (1998).

    Article  CAS  Google Scholar 

  35. Pow, D.V. et al. Differential expression of the GABA transporters GAT-1 and GAT-3 in brains of rats, cats, monkeys and humans. Cell Tissue Res. 320, 379–392 (2005).

    Article  CAS  Google Scholar 

  36. Wu, Y., Wang, W., Díez-Sampdero, A. & Richerson, G.B. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56, 851–865 (2007).

    Article  CAS  Google Scholar 

  37. Chiu, C.-S. et al. GABA transporter deficiency causes tremor, ataxia, nervousness and increased GABA-induced tonic conductance in cerebellum. J. Neurosci. 25, 3234–3245 (2005).

    Article  CAS  Google Scholar 

  38. Bragina, L. et al. GAT-1 regulates both tonic and phasic GABAA receptor-mediated inhibition in the cerebral cortex. J. Neurochem. 105, 1781–1793 (2008).

    Article  CAS  Google Scholar 

  39. Herd, M.B. et al. Inhibition of thalamic excitability by 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol: a selective role for δ-GABAA receptors. Eur. J. Neurosci. 29, 1177–1187 (2009).

    Article  Google Scholar 

  40. Aizawa, M., Ito, Y. & Fukuda, H. Pharmacological profiles of generalized absence seizures in lethargic, stargazer and γ-hydroxybutyrate–treated model mice. Neurosci. Res. 29, 17–25 (1997).

    Article  CAS  Google Scholar 

  41. Maguire, J.L., Stell, B.M., Rafizadeh, M. & Mody, I. Ovarian cycle–linked changes in GABAA receptors mediating tonic inhibition alter seizures susceptibility and anxiety. Nat. Neurosci. 8, 797–804 (2005).

    Article  CAS  Google Scholar 

  42. Stórustovu, S.I. & Ebert, B. Pharmacological characterization of agonists at δ-containing GABAA receptors: functional selectivity for extrasynaptic receptors is dependent on the absence of γ2. J. Pharmacol. Exp. Ther. 316, 1351–1359 (2006).

    Article  Google Scholar 

  43. Quick, M.W., Corey, J.L., Davidson, N. & Lester, H.A. Second messengers, trafficking-related proteins and amino acid residues that contribute to the functional regulation of the rat brain GABA transporter GAT1. J. Neurosci. 17, 2967–2979 (1997).

    Article  CAS  Google Scholar 

  44. Beckman, M.L., Bernstein, E.M. & Quick, M.W. Multiple G protein–coupled receptors initiate protein kinase C redistribution of GABA transporters in hippocampal neurons. J. Neurosci. 19, RC9 (1999).

    Article  CAS  Google Scholar 

  45. Wang, D., Deken, S.L., Whitworth, T.L. & Quick, M.W. Syntaxin 1A inhibits GABA flux, efflux and exchange mediated by the rat brain GABA transporter GAT1. Mol. Pharmacol. 64, 905–913 (2003).

    Article  CAS  Google Scholar 

  46. Hu, J. & Quick, M.W. Substrate-mediated regulation of γ-aminobutyric acid transporter 1 in rat brain. Neuropharmacology 54, 309–318 (2008).

    Article  CAS  Google Scholar 

  47. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 2nd edn. (Academic Press, San Diego, 1986).

  48. Juhász, G., Kékesi, K., Emri, Z., Soltesz, I. & Crunelli, V. Sleep-promoting action of excitatory amino acid antagonists: a different role for thalamic NMDA and non-NMDA receptors. Neurosci. Lett. 114, 333–338 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Blanning for his help in genotyping mice, D. Belelli who kindly provided the genotyping protocol for the δ subunit–knockout mice and K. Thomas for initial discussions on the antisense oligodeoxynucleotide experiments. H. Parri, S. Hughes and N. Leresche commented on a previous version of the manuscript. D.W.C. is a research Fellow of Epilepsy Research UK (grant P0802), and G.O. was supported by a Fellowship of the Italian Ministry for University and Scientific Research. This work was also supported by the Wellcome Trust (grant 71436) and the European Union (grant HEALTH F2–2007–202167).

Author information

Authors and Affiliations

Authors

Contributions

D.W.C., G.D., S.J.F., A.C.E. and V.C. designed the research; D.W.C., G.D., S.J.F., G.O., A.C.E., M.L.L., T.M.G. and D.A.C. performed the research; D.W.C., G.D., S.J.F., G.O., A.C.E. and D.A.C. analyzed the data; and D.W.C. and V.C. wrote the paper.

Corresponding authors

Correspondence to David W Cope or Vincenzo Crunelli.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–3, Supplementary Results, Supplementary Discussion and Supplementary Methods (PDF 3637 kb)

Supplementary Movie 1

Movie showing the occurrence of absence seizures in a normal Wistar rat during the intra-thalamic administration of 200 μM NO711. Note the strict time correlation between the behavioural components of the seizures (immobility and twitching of the vibrissae) and the appearance of large amplitude SWDs in the EEG, as depicted on the oscilloscope. (MOV 914 kb)

Supplementary Movie 2

Movie showing the occurrence of a number of absence seizures induced by the intra-thalamic administration of 100 μM THIP in a normal Wistar rat. The appearance of SWDs in the EGG correlates with the behavioural components of the seizures, including immobility, head and neck jerks, and twitching of vibrissae. Note the lack of head and neck jerks during the first seizure. (MOV 2907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cope, D., Di Giovanni, G., Fyson, S. et al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 15, 1392–1398 (2009). https://doi.org/10.1038/nm.2058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing