Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet

Abstract

Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy1 without therapeutic options2,3. PLP binds cholesterol and is contained within membrane lipid raft microdomains4. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis5. Transgenic mice with extra copies of the Plp1 gene6 are accurate models of PMD. Dysmyelination6,7,8 followed by demyelination9,10, secondary inflammation and axon damage contribute to the severe motor impairment in these mice9,10. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes)9,11,12,13, prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cholesterol prevents the clinical deterioration of PMD mice.
Figure 2: Short-term cholesterol treatment delays PMD pathology.
Figure 3: Long-term cholesterol diet preserves myelin in PMD mice.
Figure 4: Abnormal subcellular cholesterol distribution in PMD oligodendrocytes

Similar content being viewed by others

References

  1. Seitelberger, F. Neuropathology and genetics of Pelizaeus-Merzbacher disease. Brain Pathol. 5, 267–273 (1995).

    Article  CAS  Google Scholar 

  2. Garbern, J.Y. Pelizaeus-Merzbacher disease: Genetic and cellular pathogenesis. Cell Mol. Life Sci. 64, 50–65 (2007).

    Article  CAS  Google Scholar 

  3. Woodward, K.J. The molecular and cellular defects underlying Pelizaeus-Merzbacher disease. Expert Rev. Mol. Med. 10, e14 (2008).

    Article  Google Scholar 

  4. Simons, M., Kramer, E.M., Thiele, C., Stoffel, W. & Trotter, J. Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J. Cell Biol. 151, 143–154 (2000).

    Article  CAS  Google Scholar 

  5. Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475 (2005).

    Article  CAS  Google Scholar 

  6. Readhead, C., Schneider, A., Griffiths, I. & Nave, K.A. Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 12, 583–595 (1994).

    Article  CAS  Google Scholar 

  7. Anderson, T.J. et al. Distinct phenotypes associated with increasing dosage of the PLP gene: implications for CMT1A due to PMP22 gene duplication. Ann. NY Acad. Sci. 883, 234–246 (1999).

    Article  CAS  Google Scholar 

  8. Anderson, T.J. et al. Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. J. Comp. Neurol. 394, 506–519 (1998).

    Article  CAS  Google Scholar 

  9. Edgar, J.M. et al. Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus-Merzbacher disease. EMBO Mol. Med. 2, 42–50 (2010).

    Article  CAS  Google Scholar 

  10. Karim, S.A. et al. PLP/DM20 expression and turnover in a transgenic mouse model of Pelizaeus-Merzbacher disease. Glia 58, 1727–1738 (2010).

    Article  Google Scholar 

  11. Krämer, E.M., Schardt, A. & Nave, K.A. Membrane traffic in myelinating oligodendrocytes. Microsc. Res. Tech. 52, 656–671 (2001).

    Article  Google Scholar 

  12. Karim, S.A. et al. PLP overexpression perturbs myelin protein composition and myelination in a mouse model of Pelizaeus-Merzbacher disease. Glia 55, 341–351 (2007).

    Article  Google Scholar 

  13. Simons, M. et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J. Cell Biol. 157, 327–336 (2002).

    Article  CAS  Google Scholar 

  14. Björkhem, I. & Meaney, S. Brain cholesterol: long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol. 24, 806–815 (2004).

    Article  Google Scholar 

  15. Alberti, S. et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J. Clin. Invest. 107, 565–573 (2001).

    Article  CAS  Google Scholar 

  16. Ip, C.W. et al. Origin of CD11b+ macrophage-like cells in the CNS of PLP-overexpressing mice: low influx of haematogenous macrophages and unchanged blood-brain-barrier in the optic nerve. Mol. Cell Neurosci. 38, 489–494 (2008).

    Article  CAS  Google Scholar 

  17. Stolp, H.B. & Dziegielewska, K.M. Review: Role of developmental inflammation and blood-brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol. Appl. Neurobiol. 35, 132–146 (2009).

    Article  CAS  Google Scholar 

  18. Xie, C., Lund, E.G., Turley, S.D., Russell, D.W. & Dietschy, J.M. Quantitation of two pathways for cholesterol excretion from the brain in normal mice and mice with neurodegeneration. J. Lipid Res. 44, 1780–1789 (2003).

    Article  CAS  Google Scholar 

  19. Liu, B. et al. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the Npc1−/− mouse. Proc. Natl. Acad. Sci. USA 106, 2377–2382 (2009).

    Article  CAS  Google Scholar 

  20. Brown, M.S. & Goldstein, J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  Google Scholar 

  21. Saher, G. et al. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction. J. Neurosci. 29, 6094–6104 (2009).

    Article  CAS  Google Scholar 

  22. Qin, C., Nagao, T., Grosheva, I., Maxfield, F.R. & Pierini, L.M. Elevated plasma membrane cholesterol content alters macrophage signaling and function. Arterioscler. Thromb. Vasc. Biol. 26, 372–378 (2006).

    Article  CAS  Google Scholar 

  23. Shepard, L.A. et al. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37, 14563–14574 (1998).

    Article  CAS  Google Scholar 

  24. Karten, B., Peake, K.B. & Vance, J.E. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1–deficient mammalian cells. Biochim. Biophys. Acta 1791, 659–670 (2009).

    Article  CAS  Google Scholar 

  25. Otomo, T., Higaki, K., Nanba, E., Ozono, K. & Sakai, N. Lysosomal storage causes cellular dysfunction in mucolipidosis II skin fibroblasts. J. Biol. Chem. 286, 35283–35290 (2011).

    Article  CAS  Google Scholar 

  26. Tang, Y., Leao, I.C., Coleman, E.M., Broughton, R.S. & Hildreth, J.E. Deficiency of niemann-pick type C-1 protein impairs release of human immunodeficiency virus type 1 and results in Gag accumulation in late endosomal/lysosomal compartments. J. Virol. 83, 7982–7995 (2009).

    Article  CAS  Google Scholar 

  27. Sobo, K. et al. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking. PLoS ONE 2, e851 (2007).

    Article  Google Scholar 

  28. Hawes, C.M., Wiemer, H., Krueger, S.R. & Karten, B. Pre-synaptic defects of NPC1-deficient hippocampal neurons are not directly related to plasma membrane cholesterol. J. Neurochem. 114, 311–322 (2010).

    CAS  Google Scholar 

  29. Bauer, N.G., Richter-Landsberg, C. & Ffrench-Constant, C. Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57, 1691–1705 (2009).

    Article  Google Scholar 

  30. Prusky, G.T., Alam, N.M., Beekman, S. & Douglas, R.M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45, 4611–4616 (2004).

    Article  Google Scholar 

  31. Goetze, B. et al. Vision and visual cortical maps in mice with a photoreceptor synaptopathy: reduced but robust visual capabilities in the absence of synaptic ribbons. Neuroimage 49, 1622–1631 (2010).

    Article  Google Scholar 

  32. Stromnes, I.M. & Goverman, J.M. Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1810–1819 (2006).

    Article  CAS  Google Scholar 

  33. Jung, M., Sommer, I., Schachner, M. & Nave, K.A. Monoclonal antibody O10 defines a conformationally sensitive cell-surface epitope of proteolipid protein (PLP): evidence that PLP misfolding underlies dysmyelination in mutant mice. J. Neurosci. 16, 7920–7929 (1996).

    Article  CAS  Google Scholar 

  34. Hölttä-Vuori, M. et al. BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9, 1839–1849 (2008).

    Article  Google Scholar 

  35. Möbius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55 (2002).

    Article  Google Scholar 

  36. Waheed, A.A. et al. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl. Acad. Sci. USA 98, 4926–4931 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the memory of Jim Garbern for his support of PMD research. We are grateful to A. Fahrenholz, T. Freerck, M. Schildmann, M. Matthes and A. Kanbach for technical support and thank J. Edgar for helpful comments on the manuscript. We thank M. Grebe (Umea University) for providing the BCθ expression construct and Pfizer for the generous gift of the squalestatin CP-340868. This work was funded by the PMD foundation and the Deutsche Forschungsgemeinschaft (SA2114/1-1) to G.S. K.-A.N. is supported by the EU-FP7 (Leukotreat, Ngidd), the Bundesministerium für Bildung und Forschung (BMBF; Leukonet) and a European Research Council (ERC) Advanced Grant. Support of the BMBF to S.L. and K.-F.S. is gratefully acknowledged (01GQ0810).

Author information

Authors and Affiliations

Authors

Contributions

G.S. supervised the project, conducted experiments and wrote the manuscript; F.R., K.C. and T.R. conducted experiments, K.-F.S. and S.L. performed visual acuity measurements, P.D. conducted the two-photon microscopic analysis, B.B. implemented the beam test, W.M. supervised and contributed to electron microscopic studies, and K.-A.N. contributed to the discussion and the writing of the manuscript.

Corresponding authors

Correspondence to Gesine Saher or Klaus-Armin Nave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1330 kb)

Supplementary Video 1

Motor performance of treated and untreated PMD mice. This video shows an example of a beam test that was used to evaluate motor abilities of PMD mice. (MPG 3093 kb)

Supplementary Video 2

Motor disabilities of cSQS KO and cSQS KO*PLP+/66 mice. (WMV 3826 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saher, G., Rudolphi, F., Corthals, K. et al. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet. Nat Med 18, 1130–1135 (2012). https://doi.org/10.1038/nm.2833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2833

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing