Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Imaging local neuronal activity by monitoring PO2 transients in capillaries

Abstract

Two-photon phosphorescence lifetime microscopy (2PLM) has been used recently for depth measurements of oxygen partial pressure (PO2) in the rodent brain. In capillaries of olfactory bulb glomeruli, 2PLM has also allowed simultaneous measurements of PO2 and blood flow and revealed the presence of erythrocyte-associated transients (EATs), which are PO2 gradients that are associated with individual erythrocytes. We investigated the extent to which EAT properties in capillaries report local neuronal activity. We find that at rest, PO2 at EAT peaks overestimates the mean PO2 by 35 mm Hg. PO2 between two EAT peaks is at equilibrium with, and thus reports, PO2 in the neuropil. During odor stimulation, there is a small PO2 decrease before functional hyperemia, showing that the initial dip in PO2 is present at the level of capillaries. We conclude that imaging oxygen dynamics in capillaries provides a unique and noninvasive approach to map neuronal activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of EATs in glomerular capillaries at rest.
Figure 2: Capillary inter-RBC PO2 reports PO2 in the tissue at rest.
Figure 3: PO2 longitudinal gradient in individual capillaries.
Figure 4: EATs and functional hyperemia in response to odor stimulation.
Figure 5: The initial dip in PO2 in glomerular capillaries.

Similar content being viewed by others

References

  1. Hellums, J.D. The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue. Microvasc. Res. 13, 131–136 (1977).

    Article  CAS  Google Scholar 

  2. Golub, A.S. & Pittman, R.N. Erythrocyte-associated transients in PO2 revealed in capillaries of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 288, H2735–H2743 (2005).

    Article  CAS  Google Scholar 

  3. Tsai, A.G. et al. Effect of oxygen consumption by measuring method on PO2 transients associated with the passage of erythrocytes in capillaries of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 289, H1777–H1779 (2005).

    Article  CAS  Google Scholar 

  4. Golub, A.S. & Pittman, R.N. PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am. J. Physiol. Heart Circ. Physiol. 294, H2905–H2916 (2008).

    Article  CAS  Google Scholar 

  5. Raichle, M.E. & Mintun, M.A. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006).

    Article  CAS  Google Scholar 

  6. Lecoq, J. et al. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat. Med. 17, 893–898 (2011).

    Article  CAS  Google Scholar 

  7. Homer, L.D., Weathersby, P.K. & Kiesow, L.A. Oxygen gradients between red blood cells in the microcirculation. Microvasc. Res. 22, 308–323 (1981).

    Article  CAS  Google Scholar 

  8. Federspiel, W.J. & Popel, A.S. A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc. Res. 32, 164–189 (1986).

    Article  CAS  Google Scholar 

  9. Groebe, K. & Thews, G. Effects of red cell spacing and red cell movement upon oxygen release under conditions of maximally working skeletal muscle. Adv. Exp. Med. Biol. 248, 175–185 (1989).

    Article  CAS  Google Scholar 

  10. Wang, C.H. & Popel, A.S. Effect of red blood cell shape on oxygen transport in capillaries. Math. Biosci. 116, 89–110 (1993).

    Article  CAS  Google Scholar 

  11. Shepherd, G.M. & Charpak, S. The olfactory glomerulus: a model for neuro-glio-vascular biology. Neuron 58, 827–829 (2008).

    Article  CAS  Google Scholar 

  12. Lecoq, J. et al. Odor-evoked oxygen consumption by action potential and synaptic transmission in the olfactory bulb. J. Neurosci. 29, 1424–1433 (2009).

    Article  CAS  Google Scholar 

  13. Chaigneau, E., Oheim, M., Audinat, E. & Charpak, S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proc. Natl. Acad. Sci. USA 100, 13081–13086 (2003).

    Article  CAS  Google Scholar 

  14. Hudetz, A.G. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation 4, 233–252 (1997).

    Article  CAS  Google Scholar 

  15. Pittman, R.N. Oxygen gradients in the microcirculation. Acta Physiol. (Oxf.) 202, 311–322 (2011).

    Article  CAS  Google Scholar 

  16. Lindauer, U. Neurovascular coupling in rat brain operates independent of hemoglobin deoxygenation. J. Cereb. Blood Flow Metab. 30, 757–768 (2010).

    Article  Google Scholar 

  17. Arenkiel, B.R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  18. Franceschini, M.A. et al. The effect of different anesthetics on neurovascular coupling 2. Neuroimage 51, 1367–1377 (2010).

    Article  Google Scholar 

  19. Rinberg, D., Koulakov, A. & Gelperin, A. Sparse odor coding in awake behaving mice. J. Neurosci. 26, 8857–8865 (2006).

    Article  CAS  Google Scholar 

  20. Livneh, Y. & Mizrahi, A. Experience-dependent plasticity of mature adult-born neurons. Nat. Neurosci. 15, 26–28 (2012).

    Article  CAS  Google Scholar 

  21. Thompson, J.K., Peterson, M.R. & Freeman, R.D. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299, 1070–1072 (2003).

    Article  CAS  Google Scholar 

  22. Weber, B. et al. Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex 1. Eur. J. Neurosci. 20, 2664–2670 (2004).

    Article  CAS  Google Scholar 

  23. Devor, A. et al. “Overshoot” of O is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31, 13676–13681 (2011).

    Article  CAS  Google Scholar 

  24. Thompson, J.K., Peterson, M.R. & Freeman, R.D. High-resolution neurometabolic coupling revealed by focal activation of visual neurons. Nat. Neurosci. 7, 919–920 (2004).

    Article  CAS  Google Scholar 

  25. Offenhauser, N., Thomsen, K., Caesar, K. & Lauritzen, M. Activity induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J. Physiol. (Lond.) 565, 279–294 (2005).

    Article  CAS  Google Scholar 

  26. Frostig, R.D., Lieke, E.E., Ts'o, D.Y. & Grinvald, A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA 87, 6082–6086 (1990).

    Article  CAS  Google Scholar 

  27. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

    Article  CAS  Google Scholar 

  28. Ernst, T. & Hennig, J. Observation of a fast response in functional MR. Magn. Reson. Med. 32, 146–149 (1994).

    Article  CAS  Google Scholar 

  29. Menon, R.S. et al. BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn. Reson. Med. 33, 453–459 (1995).

    Article  CAS  Google Scholar 

  30. Kim, D.S., Duong, T.Q. & Kim, S.G. High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci. 3, 164–169 (2000).

    Article  CAS  Google Scholar 

  31. Silva, A.C., Lee, S.P., Iadecola, C. & Kim, S.G. Early temporal characteristics of cerebral blood flow and deoxyhemoglobin changes during somatosensory stimulation. J. Cereb. Blood Flow Metab. 20, 201–206 (2000).

    Article  CAS  Google Scholar 

  32. Lindauer, U. et al. No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation. Neuroimage 13, 988–1001 (2001).

    Article  CAS  Google Scholar 

  33. Jones, M., Berwick, J., Johnston, D. & Mayhew, J. Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. Neuroimage 13, 1002–1015 (2001).

    Article  CAS  Google Scholar 

  34. Buxton, R.B. The elusive initial dip. Neuroimage 13, 953–958 (2001).

    Article  CAS  Google Scholar 

  35. Díez-García, J. et al. Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein. Eur. J. Neurosci. 22, 627–635 (2005).

    Article  Google Scholar 

  36. Wachowiak, M. & Cohen, L.B. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32, 723–735 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Vinogradov (Department of Biochemistry and Biophysics, University of Pennsylvania) for providing PtP-C343 through the intermediate of Oxygen Enterprises. We also thank G. Bouchery and A. Virolle for help in animal surgery, S. Sasnouski for software improvements and M. Ducros, B. Weber and U. Lindauer for critical comments. Support was provided by INSERM, CNRS, the Leducq Foundation, the Human Frontier Science Program Organization (HSFPO), the Agence Nationale de la Recherche and the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Contributions

A.P., Y.G.H. and S.C. conducted the experiments and analyzed the data. All authors edited the paper.

Corresponding author

Correspondence to Serge Charpak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Methods (PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parpaleix, A., Houssen, Y. & Charpak, S. Imaging local neuronal activity by monitoring PO2 transients in capillaries. Nat Med 19, 241–246 (2013). https://doi.org/10.1038/nm.3059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing