Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CAPON-nNOS coupling can serve as a target for developing new anxiolytics

Abstract

Anxiety disorders are highly prevalent psychiatric diseases1,2. There is need for a deeper understanding of anxiety control mechanisms in the mammalian brain and for development of new anxiolytic agents. Here we report that the coupling between neuronal nitric oxide synthase (nNOS) and its carboxy-terminal PDZ ligand (CAPON) can serve as a target for developing new anxiolytic agents. Augmenting nNOS-CAPON interaction in the hippocampus of mice by overexpressing full-length CAPON gave rise to anxiogenic-like behaviors, whereas dissociating CAPON from nNOS by overexpressing CAPON-125C or CAPON-20C (the C-terminal 125 or 20 amino acids of CAPON) or delivering Tat-CAPON-12C (a peptide comprising Tat and the 12 C-terminal amino acids of CAPON) in the hippocampus of mice produced anxiolytic-like effects. Mice subjected to chronic mild stress (CMS) displayed a substantial increase in nNOS-CAPON coupling in the hippocampus and a consequent anxiogenic-like phenotype. Disrupting nNOS-CAPON coupling reversed the CMS-induced anxiogenic-like behaviors. Moreover, small-molecule blockers of nNOS-CAPON binding rapidly produced anxiolytic-like effects. Dexamethasone-induced ras protein 1 (Dexras1)–extracellular signal–regulated kinase (ERK) signaling was involved in the behavioral effects of nNOS-CAPON association. Thus, nNOS-CAPON association contributes to the modulation of anxiety-related behaviors via regulating Dexras1-ERK signaling and can serve as a target for developing potential anxiolytics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Augmenting nNOS-CAPON interaction causes anxiogenic-like behaviors.
Figure 2: Uncoupling nNOS and CAPON produces anxiolytic-like effects.
Figure 3: Blocking nNOS-CAPON association reverses stress-induced behavioral modifications.
Figure 4: nNOS-CAPON blockers produce anxiolytic-like effects via Dexras1-ERK signaling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kessler, R.C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    Article  Google Scholar 

  2. Tye, K.M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  Google Scholar 

  3. Rupprecht, R. et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects. Science 325, 490–493 (2009).

    Article  CAS  Google Scholar 

  4. Zhou, Q.G. et al. Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor. J. Neurosci. 31, 7579–7590 (2011).

    Article  CAS  Google Scholar 

  5. Reif, A. et al. A neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function. Mol. Psychiatry 11, 286–300 (2006).

    Article  CAS  Google Scholar 

  6. Nelson, R.J. et al. Behavioural abnormalities in male mice lacking neuronal nitric oxide synthase. Nature 378, 383–386 (1995).

    Article  CAS  Google Scholar 

  7. Zhang, J. et al. Neuronal nitric oxide synthase alteration accounts for the role of 5–HT1A-receptor in modulating anxiety-related behaviors. J. Neurosci. 30, 2433–2441 (2010).

    Article  Google Scholar 

  8. Fang, M. et al. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28, 183–193 (2000).

    Article  CAS  Google Scholar 

  9. Zhou, L. et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat. Med. 16, 1439–1443 (2010).

    Article  CAS  Google Scholar 

  10. Jaffrey, S.R., Snowman, A.M., Eliasson, M.J., Cohen, N.A. & Snyder, S.H. CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20, 115–124 (1998).

    Article  CAS  Google Scholar 

  11. Carrel, D. et al. NOS1AP regulates dendrite patterning of hippocampal neurons through a carboxypeptidase E–mediated pathway. J. Neurosci. 29, 8248–8258 (2009).

    Article  CAS  Google Scholar 

  12. Richier, L. et al. NOS1AP associates with Scribble and regulates dendritic spine development. J. Neurosci. 30, 4796–4805 (2010).

    Article  CAS  Google Scholar 

  13. Lawford, B.R. et al. NOS1AP is associated with increased severity of PTSD and depression in untreated combat veterans. J. Affect. Disord. 147, 87–93 (2013).

    Article  CAS  Google Scholar 

  14. Cheng, H.Y. et al. The molecular gatekeeper Dexras1 sculpts the photic responsiveness of the mammalian circadian clock. J. Neurosci. 26, 12984–12995 (2006).

    Article  CAS  Google Scholar 

  15. Mogha, A., Guariglia, S.R., Debata, P.R., Wen, G.Y. & Banerjee, P. Serotonin 1A receptor–mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus. Transl. Psychiatry 2, e66 (2012).

    Article  CAS  Google Scholar 

  16. Giachello, C.N. et al. MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. J. Cell Sci. 123, 881–893 (2010).

    Article  CAS  Google Scholar 

  17. Duman, R.S. & Aghajanian, G.K. Synaptic dysfunction in depression: potential therapeutic targets. Science 338, 68–72 (2012).

    Article  CAS  Google Scholar 

  18. Duric, V. et al. A negative regulator of MAP kinase causes depressive behavior. Nat. Med. 16, 1328–1332 (2010).

    Article  CAS  Google Scholar 

  19. Xu, B. et al. Increased expression in dorsolateral prefrontal cortex of CAPON in schizophrenia and bipolar disorder. PLoS Med. 2, e263 (2005).

    Article  Google Scholar 

  20. Brzustowicz, L.M. NOS1AP in schizophrenia. Curr. Psychiatry Rep. 10, 158–163 (2008).

    Article  Google Scholar 

  21. Tochio, H., Zhang, Q., Mandal, P., Li, M. & Zhang, M. Solution structure of the extended neuronal nitric oxide synthase PDZ domain complexed with an associated peptide. Nat. Struct. Biol. 6, 417–421 (1999).

    Article  CAS  Google Scholar 

  22. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  Google Scholar 

  23. Martinowich, K., Manji, H. & Lu, B. Mew insights into BDNF function in depression and anxiety. Nat. Neurosci. 10, 1089–1093 (2007).

    Article  CAS  Google Scholar 

  24. Parihar, V.K., Hattiangady, B., Kuruba, R., Shuai, B. & Shetty, A.K. Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol. Psychiatry 16, 171–183 (2011).

    Article  CAS  Google Scholar 

  25. Pucilowska, J., Puzerey, P.A., Karlo, J.C., Galán, R.F. & Landreth, G.E. Disrupted ERK signaling during cortical development leads to abnormal progenitor proliferation, neuronal and network excitability and behavior, modeling human neuron-cardio- facial-cutaneous and related syndromes. J. Neurosci. 32, 8663–8677 (2012).

    Article  CAS  Google Scholar 

  26. Hu, Y. et al. Hippocampal nitric oxide contributes to sex difference in affective behaviors. Proc. Natl. Acad. Sci. USA 109, 14224–14229 (2012).

    Article  CAS  Google Scholar 

  27. Soetanto, A. et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeleddendrite and spine densities in hippocampal CA3 of older humans. Arch. Gen. Psychiatry 67, 448–457 (2010).

    Article  Google Scholar 

  28. Mucha, M. et al. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendrtitic spine formation and maturation. Proc. Natl. Acad. Sci. USA 108, 18436–18441 (2011).

    Article  CAS  Google Scholar 

  29. Lonetti, G. et al. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol. Psychiatry 67, 657–665 (2010).

    Article  Google Scholar 

  30. Kao, H.T. et al. A third member of the synapsin gene family. Proc. Natl. Acad. Sci. USA 95, 4667–4672 (1998).

    Article  CAS  Google Scholar 

  31. Ryan, X.P. et al. The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47, 85–100 (2005).

    Article  CAS  Google Scholar 

  32. Xu, J.Y. & Sastry, B.R. Benzodiazepine involvement in LTP of the GABA-ergic IPSC in rat hippocampal CA1 neurons. Brain Res. 1062, 134–143 (2005).

    Article  CAS  Google Scholar 

  33. Feyder, M. et al. Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams' syndrome. Am. J. Psychiatry 167, 1508–1517 (2010).

    Article  Google Scholar 

  34. Jaffrey, S.R., Benfenati, F., Snowman, A.M., Czernik, A.J. & Snyder, S.H. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proc. Natl. Acad. Sci. USA 99, 3199–3204 (2002).

    Article  CAS  Google Scholar 

  35. Chang, K.C. et al. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc. Natl. Acad. Sci. USA 105, 4477–4482 (2008).

    Article  CAS  Google Scholar 

  36. Munoz, J.R., Stoutenger, B.R., Robinson, A.P., Spees, J.L. & Prockop, D.J. Human stem progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc. Natl. Acad. Sci. USA 102, 18171–18176 (2005).

    Article  CAS  Google Scholar 

  37. Fanselow, M.S. & Dong, H.W. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

    Article  CAS  Google Scholar 

  38. Rudolph, U. et al. Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature 401, 796–800 (1999).

    Article  CAS  Google Scholar 

  39. Bonetti, E.P. et al. Benzodiazepine antagonist RO 15–1788: neurological and behavioral effects. Psychopharmacology (Berl.) 78, 8–18 (1982).

    Article  CAS  Google Scholar 

  40. Ren, L. et al. GABAA receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone. Biochem. Pharmacol. 79, 1337–1344 (2010).

    Article  CAS  Google Scholar 

  41. Stricker, N.L. et al. PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat. Biotechnol. 15, 336–342 (1997).

    Article  CAS  Google Scholar 

  42. Doyle, D.A. et al. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067–1076 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (91232304, 81222016, 81030023 and 21303086), the National Basic Research Program of China (973 Program) (2011CB504404) and the Natural Science Foundation of Jiangsu Province–Special Program grant BK2011029 and Distinguished Young Scientist Fund BK20130040, and by the Collaborative Innovation Center For Cardiovascular Disease Translational Medicine. We thank X.D. Qian, H.Y. Ni, F.Y. Zhang, Y. Hu, Y. Tang and Z. Zhu for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

L.-J.Z. and C.C. performed the cell culture studies, coimmunoprecipitation, western blotting, surgical preparation and animal behavioral examinations. T.-Y.L. and L.C. contributed the design and synthesis of small-molecule compounds. Y.Z. and H.-H.Z. contributed recombinant lentivirus production and Tat-CAPON-12C preparation. N.J. performed molecular dynamics simulations, interaction energy calculations and force field parameterization for ZLc-002. C.-X.L. contributed to the design of the study. W.L. performed electrophysiological experiments. L.-Y.G., Y.-H.L., Y.M., Q.-G.Z., J.Z. and H.-Y.W. participated in the study. Q.H. and X.-L.H. analyzed concentrations of ZLc-002 and its metabolites. D.-Y.Z. initiated the project, designed the study and wrote the paper. All authors contributed to data analysis.

Corresponding authors

Correspondence to Chun-Xia Luo or Dong-Ya Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–5, Supplementary Methods and Supplementary Discussion (PDF 2359 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, LJ., Li, TY., Luo, CX. et al. CAPON-nNOS coupling can serve as a target for developing new anxiolytics. Nat Med 20, 1050–1054 (2014). https://doi.org/10.1038/nm.3644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing