Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inducible nitric oxide synthase gene expression in the brain during systemic inflammation

Abstract

Inducible nitric oxide synthase (iNOS) is a transcriptionally regulated enzyme that synthesizes nitric oxide from L–arginine1 that has a key role in the pathophysiology of systemic inflammation and sepsis. Transgenic animals with a null mutation for the iNOS gene are resistant to hypotension and death caused by Escherichia coli lipopolysaccharide (IPS)2,3. The regulation of peripheral iNOS has been well studied in sepsis, but little is known about iNOS regulation in the brain during systemic inflammation or sepsis. We show that at baseline there is no detectable iNOS gene expression in the brain, but a detailed neuroanatomical study reveals that early in the course of systemic inflammation there is a profound induction of iNOS messenger RNA in vascular, glial and neuronal structures of the rat brain, accompanied by the production of nitric oxide (NO) metabolites in brain parenchyma and cerebrospinal fluid (CSF). We propose that the spillover of nitrite into the CSF has the potential to be a diagnostic marker for systemic inflammation and sepsis. Pharmacological interventions aimed at regulating iNOS function in the brain might represent a new treatment strategy in sepsis. Brain iNOS may be relevant to the pathophysiology, diagnosis and treatment of systemic inflammation and sepsis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Xie, Q.-W. et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256, 225–228 (1992).

    Article  CAS  Google Scholar 

  2. Wei, X.-Q. et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995).

    Article  CAS  Google Scholar 

  3. MacMicking, J.D. et al. Altered response to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995).

    Article  CAS  Google Scholar 

  4. Moncada, S. & Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002–2012 (1993).

    Article  CAS  Google Scholar 

  5. Nathan, C. & Xie, Q.-W. Nitric oxide synthases: Roles, tolls, and controls. Cell 78, 915–918 (1994).

    Article  CAS  Google Scholar 

  6. Bredt, D.S. & Snyder, S.H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87, 682–685 (1990).

    Article  CAS  Google Scholar 

  7. Dawson, T.M. & Snyder, S.H. Gases as biological messengers: Nitric oxide and carbon monoxide in the brain. J. Neurvsci. 14, 5147–59 (1994).

    Article  CAS  Google Scholar 

  8. Kuo, P.C. & Schroeder, R.A. The emerging multifaceted roles of nitric oxide. Ann. Surg. 221, 220–235 (1995).

    Article  CAS  Google Scholar 

  9. Iyengar, R., Stuehr, D.J. & Marietta, M.A. Macrophage synthesis of nitrite, nitrate, and N-nitrosamines: Precursors and role of the respiratory burst. Proc. Natl. Acad. Sci. USA 84, 6369–6373 (1987).

    Article  CAS  Google Scholar 

  10. Ialenti, A., lanaro, A., Moncada, S. & DiRosa, M. Modulation of acute inflammation by endogenous nitric oxide. Eur. J. Pharmacol. 211, 177–182 (1992).

    Article  CAS  Google Scholar 

  11. Bredt, D.S. & Snyder, S.H. Nitric oxide mediates glutamate-1 inked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86, 9030–3 (1989).

    Article  CAS  Google Scholar 

  12. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D.S. & Snyder, S.H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88, 6368–6371 (1991).

    Article  CAS  Google Scholar 

  13. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A. & Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA 87, 1620–1624 (1990).

    Article  CAS  Google Scholar 

  14. Middleton, S.J., Shorthouse, M. & Hunter, J.O. Increased nitric oxide synthesis in ulcerative colitis. Lancet 341, 465–466 (1993).

    Article  CAS  Google Scholar 

  15. Boughton, S.N. et al. Nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Lancet 342, 338–340 (1993).

    Article  Google Scholar 

  16. Lundberg, J.O., Hellstrom, P.M., Lundberg, J.M. & Alving, K. Greatly increased luminal nitric oxide in ulcerative colitis. Lancet 344, 1673–1674 (1994).

    Article  CAS  Google Scholar 

  17. Li, P. et al. Mice deficient in IL-1β converting enzyme are defective in prGuuition of mature IL-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  Google Scholar 

  18. Dennhardt, R., Gramm, H.J., Meinhold, K. & Voigt, K. Patterns of endocrine secretion during sepsis. Prog. Clin. Biol. Res. 308, 751–756 (1989).

    CAS  PubMed  Google Scholar 

  19. Bone, R.C. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome). JAMA 268, 3452–3455 (1992).

    Article  CAS  Google Scholar 

  20. Dinarello, C.A., Gelfand, J.A. & Wolff, S.M. Anticytokine strategies in the treatment of the systemic inflammatory response syndrome. JAMA 269, 1829–1835 (1993).

    Article  CAS  Google Scholar 

  21. Young, G.B., Bolton, C.F., Archibald, Y.M., Austin, T.W. & Wells, G.A. The electroencephalogram in sepsis-associated encephalopathy. J. Clin. Neurophysiol. 9, 145–152 (1992).

    Article  CAS  Google Scholar 

  22. Young, G.B., Bolton, C.F., Austin, T.W., Archibald, Y.M., Gonder, J. & Wells, G.A. The encephalopathy associated with septic illness. Clin. Invest. Med. 13, 297–304 (1990).

    CAS  PubMed  Google Scholar 

  23. Rossor, M.N. Alzheimer's disease. in Oxford Textbook of Medicine, vol. 3 (eds. Weatherall, D.J., Ledingham, J.G.C. & Warell, D.A.) 3971–3974 (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  24. Dawson, V.L., Dawson, T.M., Bartley, D.A., Uhl, G.R. & Snyder, S.H. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J. Neurosci. 13, 2651–2661 (1993).

    Article  CAS  Google Scholar 

  25. Costa, A., Trainer, P., Besser, M. & Grossman, A. Nitric oxide modulates the release of corticotropin-releasing hormone from the rat hypothalamus in vitro. Brain Res. 605, 187–192 (1993).

    Article  CAS  Google Scholar 

  26. Rivier, C. & Shen, G.H. In the rat, endogenous nitric oxide modulates the re-N sponse of the hypothalamic-pituitary-adrenal axis to interleukin-1 beta, vasopressin, and oxytocln. J. Neurosci. 14, 1985–1993 (1994).

    Article  CAS  Google Scholar 

  27. Sandi, C. & Guaza, C. Evidence for a role of nitric oxide in the corticotropin-releasing factor release induced by interleukin-1 beta. Eur. J. Pharmacol. 274, 17–23 (1995).

    Article  CAS  Google Scholar 

  28. Sternberg, E.M. et al. A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc. Natl. Acad. Sri. USA 86, 4771–4775 (1989).

    Article  CAS  Google Scholar 

  29. Barriere, S.L. & Lowry, S.F. An overview of mortality risk prediction in sepsis. Crit. Care Med. 23, 376–393 (1995).

    Article  CAS  Google Scholar 

  30. Galea, E., Reis, D.J. & Feinstein, D.L. Cloning and expression of inducible nitric oxide synthase from rat astrocytes. J. Neurosci. Res. 37, 406–414 (1994).

    Article  CAS  Google Scholar 

  31. Wong, M.-L. Gold, P.W. & Licinio, J. In situ hybridization techniques for the localization of interleukin-1 and interleukin-1 receptor antagonist mRNA in brain. Methods Neurosci. 16, 81–99 (1993).

    Article  CAS  Google Scholar 

  32. Licinio, J., Bongiorno, P., Gold, P.W. & Wong, M.-L. The gene encoding for the novel transacting factor propiomelanocortin corticotropin-releasing hormone responsive element binding protein 1 (PCRH-REB-1) is constitutively expressed in rat pituitary and in discrete brain regions containing CRH or CRH receptors: Pathophysiological implications. Endocrinology 136, 4709–4712 (1995).

    Article  CAS  Google Scholar 

  33. Canteros, G. et al. Nitric oxide synthase (NOS) content of hypothalamic explants: Increased by norepinephrine and inactivated by NO and cyclic GMP. Proc. Natl. Acad. Sci. USA (in the press).

  34. Green, L.C. et al. Analysis of nitrate, nitrite, and 15N nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, ML., Rettori, V., AL-Shekhlee, A. et al. Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nat Med 2, 581–584 (1996). https://doi.org/10.1038/nm0596-581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0596-581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing