Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine covalently modifies and functionally inactivates parkin

This article has been updated

Abstract

Inherited mutations in PARK2, the gene encoding parkin, cause selective degeneration of catecholaminergic neurons in the substantia nigra and locus coeruleus of the brainstem, resulting in early-onset parkinsonism. But the role of parkin in common, sporadic forms of Parkinson disease remains unclear. Here we report that the neurotransmitter dopamine covalently modifies parkin in living dopaminergic cells, a process that increases parkin insolubility and inactivates its E3 ubiquitin ligase function. In the brains of individuals with sporadic Parkinson disease, we observed decreases in parkin solubility consistent with its functional inactivation. Using a new biochemical method, we detected catechol-modified parkin in the substantia nigra but not other regions of normal human brain. These findings show a vulnerability of parkin to modification by dopamine, the principal transmitter lost in Parkinson disease, suggesting a mechanism for the progressive loss of parkin function in dopaminergic neurons during aging and sporadic Parkinson disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopamine-induced insolubility and oligomerization of parkin.
Figure 2: Dopamine induces a selective loss of endogenous parkin in two neural cell lines.
Figure 3: Covalent attack of parkin by dopamine quinone and inactivation of parkin's E3 ligase activity.
Figure 4: Selective increase in insoluble parkin in the caudate nucleus of idiopathic Parkinson disease brains.
Figure 5: Biochemical isolation of catechol-modified proteins from human brain.

Similar content being viewed by others

Change history

  • 18 October 2005

    Replaced Supp Info

Notes

  1. NOTE: In the version of this article initially published online, the Supplementary Methods contained two extraneous phrases. The error has been corrected for the HTML version of the article.

References

  1. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  Google Scholar 

  2. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  3. Hayashi, S. et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov. Disord. 15, 884–888 (2000).

    Article  CAS  Google Scholar 

  4. Farrer, M. et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol. 50, 293–300 (2001).

    Article  CAS  Google Scholar 

  5. Pramstaller, P.P. et al. Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers. Ann. Neurol. 58, 411–422 (2005).

    Article  CAS  Google Scholar 

  6. Stokes, A.H., Hastings, T.G. & Vrana, K.E. Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659–665 (1999).

    Article  CAS  Google Scholar 

  7. Zecca, L., Zucca, F.A., Wilms, H. & Sulzer, D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578–580 (2003).

    Article  CAS  Google Scholar 

  8. Sulzer, D. et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc. Natl Acad. Sci. USA 97, 11869–11874 (2000).

    Article  CAS  Google Scholar 

  9. LaVoie, M.J. & Hastings, T.G. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J. Neurosci. 19, 1484–1491 (1999).

    Article  CAS  Google Scholar 

  10. Hastings, T.G., Lewis, D.A. & Zigmond, M.J. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl Acad. Sci. USA 93, 1956–1961 (1996).

    Article  CAS  Google Scholar 

  11. Xu, J. et al. Dopamine-dependent neurotoxicity of alpha-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat. Med. 8, 600–606 (2002).

    Article  CAS  Google Scholar 

  12. Dong, Z. et al. Dopamine-dependent neurodegeneration in rats induced by viral vector-mediated overexpression of the parkin target protein, CDCrel-1. Proc. Natl Acad. Sci. USA 100, 12438–12443 (2003).

    Article  CAS  Google Scholar 

  13. Kuhn, D.M., Arthur, R.E., Jr, Thomas, D.M. & Elferink, L.A. Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson's disease. J. Neurochem. 73, 1309–1317 (1999).

    Article  CAS  Google Scholar 

  14. Kuhn, D.M. & Arthur, R., Jr. Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: possible endogenous toxin to serotonin neurons. J. Neurosci. 18, 7111–7117 (1998).

    Article  CAS  Google Scholar 

  15. Berman, S.B. & Hastings, T.G. Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J. Neurochem. 69, 1185–1195 (1997).

    Article  CAS  Google Scholar 

  16. Berman, S.B., Zigmond, M.J. & Hastings, T.G. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J. Neurochem. 67, 593–600 (1996).

    Article  CAS  Google Scholar 

  17. Xu, Y., Stokes, A.H., Roskoski, R., Jr. & Vrana, K.E. Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J. Neurosci. Res. 54, 691–697 (1998).

    Article  CAS  Google Scholar 

  18. Dawson, T.M. & Dawson, V.L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822 (2003).

    Article  CAS  Google Scholar 

  19. Hedrich, K. et al. The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism. Hum. Mol. Genet. 10, 1649–1656 (2001).

    Article  CAS  Google Scholar 

  20. Hilker, R. et al. The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci. Lett. 323, 50–54 (2002).

    Article  CAS  Google Scholar 

  21. West, A. et al. Complex relationship between Parkin mutations and Parkinson disease. Am. J. Med. Genet. 114, 584–591 (2002).

    Article  Google Scholar 

  22. Winklhofer, K.F., Henn, I.H., Kay-Jackson, P.C., Heller, U. & Tatzelt, J. Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J. Biol. Chem. 278, 47199–47208 (2003).

    Article  CAS  Google Scholar 

  23. Sulzer, D. et al. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15, 4102–4108 (1995).

    Article  CAS  Google Scholar 

  24. Ardley, H.C., Tan, N.G., Rose, S.A., Markham, A.F. & Robinson, P.A. Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulate its interaction with the ubiquitin-conjugating enzyme, Ubch7. J. Biol. Chem. 276, 19640–19647 (2001).

    Article  CAS  Google Scholar 

  25. Pawlyk, A.C. et al. Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J. Biol. Chem. 278, 48120–48128 (2003).

    Article  CAS  Google Scholar 

  26. Goldberg, M.S. et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J. Biol. Chem. 278, 43628–43635 (2003).

    Article  CAS  Google Scholar 

  27. Jiang, H., Ren, Y., Zhao, J. & Feng, J. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet (2004).

  28. Imai, Y. et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891–902 (2001).

    Article  CAS  Google Scholar 

  29. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305 (2000).

    Article  CAS  Google Scholar 

  30. Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003).

    Article  CAS  Google Scholar 

  31. Sriram, S.R. et al. Familial-associated Mutations Differentially Disrupt the Solubility, Localization, Binding and Ubiquitination Properties of Parkin. Hum Mol Genet (2005).

  32. Cookson, M.R. et al. RING finger 1 mutations in Parkin produce altered localization of the protein. Hum. Mol. Genet. 12, 2957–2965 (2003).

    Article  CAS  Google Scholar 

  33. Canet-Aviles, R.M. et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl Acad. Sci. USA 101, 9103–9108 (2004).

    Article  CAS  Google Scholar 

  34. Wilson, M.A., St Amour, C.V., Collins, J.L., Ringe, D. & Petsko, G.A. The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proc. Natl Acad. Sci. USA 101, 1531–1536 (2004).

    Article  CAS  Google Scholar 

  35. Conway, K.A., Rochet, J.C., Bieganski, R.M. & Lansbury, P.T., Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294, 1346–1349 (2001).

    Article  CAS  Google Scholar 

  36. Lotharius, J. et al. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J. Biol. Chem. 277, 38884–38894 (2002).

    Article  CAS  Google Scholar 

  37. Baptista, M.J. et al. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J. Neurochem. 85, 957–968 (2003).

    Article  CAS  Google Scholar 

  38. Volles, M.J. & Lansbury, P.T., Jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry 42, 7871–7878 (2003).

    Article  CAS  Google Scholar 

  39. McNaught, K.S., Belizaire, R., Jenner, P., Olanow, C.W. & Isacson, O. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson's disease. Neurosci. Lett. 326, 155–158 (2002).

    Article  CAS  Google Scholar 

  40. McNaught, K.S., Belizaire, R., Isacson, O., Jenner, P. & Olanow, C.W. Altered proteasomal function in sporadic Parkinson's disease. Exp. Neurol. 179, 38–46 (2003).

    Article  CAS  Google Scholar 

  41. Chung, K.K. et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328–1331 (2004).

    Article  CAS  Google Scholar 

  42. Yao, D. et al. Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA 101, 10810–10814 (2004).

    Article  CAS  Google Scholar 

  43. LaVoie, M.J. & Hastings, T.G. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J. Neurochem. 73, 2546–2554 (1999).

    Article  CAS  Google Scholar 

  44. Rosengren, E., Linder-Eliasson, E. & Carlsson, A. Detection of 5-S-cysteinyldopamine in human brain. J. Neural Transm. 63, 247–253 (1985).

    Article  CAS  Google Scholar 

  45. Fornstedt, B., Rosengren, E. & Carlsson, A. Occurrence and distribution of 5-S-cysteinyl derivatives of dopamine, dopa and dopac in the brains of eight mammalian species. Neuropharmacology 25, 451–454 (1986).

    Article  CAS  Google Scholar 

  46. Cheng, F.C., Kuo, J.S., Chia, L.G. & Dryhurst, G. Elevated 5-S-cysteinyldopamine/homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential insights into the pathoetiology of Parkinson's disease. J. Neural Transm. 103, 433–446 (1996).

    Article  CAS  Google Scholar 

  47. Spencer, J.P. et al. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J. Neurochem. 71, 2112–2122 (1998).

    Article  CAS  Google Scholar 

  48. Zucca, F.A. et al. The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res. 17, 610–617 (2004).

    Article  CAS  Google Scholar 

  49. Sulzer, D. & Zecca, L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox. Res. 1, 181–195 (2000).

    Article  CAS  Google Scholar 

  50. Henn, I.H., Gostner, J.M., Lackner, P., Tatzelt, J. & Winklhofer, K.F. Pathogenic mutations inactivate parkin by distinct mechanisms. J. Neurochem. 92, 114–122 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Chan (Brigham and Women's Hospital) and M. Frosch (Massachusetts ADRC) for providing human brain tissue, and the patients and their families for tissue donation. We thank E. Pothos and T.G. Hastings for technical expertise and assistance. We also thank S. Appel for the MES dopaminergic neuronal cell line, J. Trojanowski for the PRK8 antibody and N. Hattori and Y. Mizuno for human autosomal recessive Parkinson disease specimens. We are grateful to our many colleagues for providing expression vectors and other reagents and to D. Walsh, V. Cullen, S. Baulac, J. Palacino and R.R. Ratan for helpful discussions and reagents. This work was supported by a grant from the American Parkinson Disease Association (to M.J.L.), Udall Center of Excellence grant NS38375 (to D.J.S., M.G.S.) and a grant from the Harvard Center for Neurodegeneration and Repair (to M.G.S.) and an EMBO Long-Term Fellowship (to A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J LaVoie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Characterization of the dopaminergic MES cell line and antibodies used. (PDF 223 kb)

Supplementary Fig. 2

Further examination of dopamine-Parkin interactions and sex, post mortem interval, and age at death of human subjects used in Fig. 4. (PDF 290 kb)

Supplementary Methods (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaVoie, M., Ostaszewski, B., Weihofen, A. et al. Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11, 1214–1221 (2005). https://doi.org/10.1038/nm1314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing