Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Local gene knockdown in the brain using viral-mediated RNA interference

Abstract

Conditional mutant techniques that allow spatial and temporal control over gene expression can be used to create mice with restricted genetic modifications. These mice serve as powerful disease models in which gene function in adult tissues can be specifically dissected. Current strategies for conditional genetic manipulation are inefficient, however, and often lack sufficient spatial control. Here we use viral-mediated RNA interference (RNAi) to generate a specific knockdown of Th, the gene encoding the dopamine synthesis enzyme tyrosine hydroxylase, within midbrain neurons of adult mice. This localized gene knockdown resulted in behavioral changes, including a motor performance deficit and reduced response to a psychostimulant. These results underscore the potential of using viral-mediated RNAi for the rapid production and testing of new genetic disease models. Similar strategies may be used in other model species, and may ultimately find applications in human gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viral-mediated RNAi reduces tyrosine hydroxylase in the substantia nigra compacta.
Figure 2: Time-course analysis of viral-mediated Th knockdown.
Figure 3: AAV injection in the midbrain results in efficient infection of defined brain regions.
Figure 4: Infection of VTA neurons reduces tyrosine hydroxylase in the nucleus accumbens.
Figure 5: Regional Th knockdown results in behavioral deficits.

Similar content being viewed by others

References

  1. Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

    Article  CAS  Google Scholar 

  2. Gossen, M. & Bujard, H. Studying gene function in eukaryotes by conditional gene inactivation. Annu. Rev. Genet. 36, 153–173 (2002).

    Article  CAS  Google Scholar 

  3. DiLeone, R.J., Russell, L.B. & Kingsley, D.M. An extensive 3′ regulatory region controls expression of Bmp5 in specific anatomical structures of the mouse embryo. Genetics 148, 401–408 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  5. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  Google Scholar 

  6. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    Article  CAS  Google Scholar 

  7. Kennerdell, J.R. & Carthew, R.W. Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896–898 (2000).

    Article  CAS  Google Scholar 

  8. Kalidas, S. & Smith, D.P. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177–184 (2002).

    Article  CAS  Google Scholar 

  9. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  10. Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  Google Scholar 

  11. Krichevsky, A.M. & Kosik, K.S. RNAi functions in cultured mammalian neurons. Proc. Natl. Acad. Sci. USA 99, 11926–11929 (2002).

    Article  CAS  Google Scholar 

  12. McCaffrey, A.P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  Google Scholar 

  13. Xia, H., Mao, Q., Paulson, H.L. & Davidson, B.L. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol. 20, 1006–1010 (2002).

    Article  CAS  Google Scholar 

  14. McCown, T.J., Xiao, X., Li, J., Breese, G.R. & Samulski, R.J. Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res. 713, 99–107 (1996).

    Article  CAS  Google Scholar 

  15. Chamberlin, N.L., Du, B., de Lacalle, S. & Saper, C.B. Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS. Brain Res. 793, 169–175 (1998).

    Article  CAS  Google Scholar 

  16. McGeer, E.G., McGeer, P.L. & Wada, J.A. Distribution of tyrosine hydroxylase in human and animal brain. J. Neurochem. 18, 1647–1658 (1971).

    Article  CAS  Google Scholar 

  17. Han, V.K., Snouweart, J., Towle, A.C., Lund, P.K. & Lauder, J.M. Cellular localization of tyrosine hydroxylase mRNA and its regulation in the rat adrenal medulla and brain by in situ hybridization with an oligodeoxyribonucleotide probe. J. Neurosci. Res. 17, 11–18 (1987).

    Article  CAS  Google Scholar 

  18. Koob, G.F. & Nestler, E.J. The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9, 482–497 (1997).

    Article  CAS  Google Scholar 

  19. Berridge, K.C. & Robinson, T.E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  Google Scholar 

  20. Zhou, Q.Y. & Palmiter, R.D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209 (1995).

    Article  CAS  Google Scholar 

  21. Gibb, W.R. Functional neuropathology in Parkinson's disease. Eur. Neurol. 38 (suppl. 2), 21–50 (1997).

    Article  Google Scholar 

  22. Chuang, D., Zsilla, G. & Costa, E. Turnover rate of tyrosine hydroxylase during trans-synaptic induction. Mol. Pharmacol. 11, 784–794 (1975).

    CAS  PubMed  Google Scholar 

  23. Moore, K.E. The actions of amphetamine on neurotransmitters: a brief review. Biol. Psychiatry 12, 451–462 (1977).

    CAS  PubMed  Google Scholar 

  24. Colotla, V.A., Flores, E., Oscos, A., Meneses, A. & Tapia, R. Effects of MPTP on locomotor activity in mice. Neurotoxicol. Teratol. 12, 405–407 (1990).

    Article  CAS  Google Scholar 

  25. Rozas, G., Lopez-Martin, E., Guerra, M.J. & Labandeira-Garcia, J.L. The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J. Neurosci. Methods 83, 165–175 (1998).

    Article  CAS  Google Scholar 

  26. Tiscornia, G., Singer, O., Ikawa, M. & Verma, I.M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 100, 1844–1848 (2003).

    Article  CAS  Google Scholar 

  27. Fitzsimons, H.L., McKenzie, J.M. & During, M.J. Insulators coupled to a minimal bidirectional tet cassette for tight regulation of rAAV-mediated gene transfer in the mammalian brain. Gene Ther. 8, 1675–1681 (2001).

    Article  CAS  Google Scholar 

  28. Yu, J.Y., Taylor, J., DeRuiter, S.L., Vojtek, A.B. & Turner, D.L. Simultaneous inhibition of GSK3α and GSK3β using hairpin siRNA expression vectors. Mol. Ther. 7, 228–236 (2003).

    Article  CAS  Google Scholar 

  29. Girod, A. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat. Med. 5, 1052–1056 (1999).

    Article  CAS  Google Scholar 

  30. Zhou, Q.Y., Quaife, C.J. & Palmiter, R.D. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374, 640–643 (1995).

    Article  CAS  Google Scholar 

  31. Polymeropoulos, M.H. et al. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    Article  CAS  Google Scholar 

  32. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  33. Manno, C.S. et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101, 2963–2972 (2003).

    Article  CAS  Google Scholar 

  34. Zolotukhin, S. et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 6, 973–985 (1999).

    Article  CAS  Google Scholar 

  35. Georgescu, D. et al. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 23, 3106–3111 (2003).

    Article  CAS  Google Scholar 

  36. Paxinos, G. & Franklin, K.B.J. The mouse brain in stereotaxic coordinates (Academic Press, New York, 2000).

    Google Scholar 

Download references

Acknowledgements

We thank D. Turner for providing the U6 promoter-containing vector, L. Perrotti for rotarod assay protocols, E. Kim and L. Leverich for help with data collection, and C. Bolaños for advice on data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph J DiLeone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hommel, J., Sears, R., Georgescu, D. et al. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 9, 1539–1544 (2003). https://doi.org/10.1038/nm964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing