Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

This article has been updated

Abstract

Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of depolarizing optogenetic tools.
Figure 2: Performance of depolarizing tools.
Figure 3: Properties and performance of ultrafast depolarizing tools.
Figure 4: Relationship between off kinetics and light sensitivity of optogenetic tools.
Figure 5: Properties of hyperpolarizing tools.
Figure 6: Performance of hyperpolarizing tools.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 10 January 2012

    In the version of this article initially published online, the x-axis labels in Figure 5d were incorrectly labeled. The error has been corrected for the print, PDF and HTML versions of this article.

  • 10 January 2012

    In the version of this article initially published online, in the Discussion the statement "to achieve sufficient activation of cells far from the light source may require excessive hyperpolarization" was incorrect. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  Google Scholar 

  2. Deisseroth, K. Controlling the brain with light. Sci. Am. 303, 48–55 (2010).

    Article  Google Scholar 

  3. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  4. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  Google Scholar 

  5. Wang, C., Kane, M.A. & Napoli, J.L. Multiple retinol and retinal dehydrogenases catalyze all-trans-retinoic acid biosynthesis in astrocytes. J. Biol. Chem. 286, 6542–6553 (2011).

    Article  CAS  Google Scholar 

  6. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Google Scholar 

  7. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  8. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  9. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).

    Article  CAS  Google Scholar 

  10. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  11. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  Google Scholar 

  12. Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    Article  CAS  Google Scholar 

  13. Gunaydin, L.A. et al. Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392 (2010).

    Article  CAS  Google Scholar 

  14. Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl. Acad. Sci. USA 108, 7595–7600 (2011).

    Article  CAS  Google Scholar 

  15. Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nat. Neurosci. 12, 229–234 (2009).

    Article  CAS  Google Scholar 

  16. Kleinlogel, S. et al. Ultra light-sensitive and fast neuronal activation with the Ca(2+)-permeable channelrhodopsin CatCh. Nat. Neurosci. 14, 513–518 (2011).

    Article  CAS  Google Scholar 

  17. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  Google Scholar 

  18. Govorunova, E.G., Spudich, E.N., Lane, C.E., Sineshchekov, O.A. & Spudich, J.L. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2, e00115–11 (2011).

    Article  Google Scholar 

  19. Lin, J.Y., Lin, M.Z., Steinbach, P. & Tsien, R.Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814 (2009).

    Article  CAS  Google Scholar 

  20. Wang, H. et al. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas. J. Biol. Chem. 284, 5685–5696 (2009).

    Article  CAS  Google Scholar 

  21. Wen, L. et al. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin. PLoS ONE 5, e12893 (2010).

    Article  Google Scholar 

  22. Stehfest, K. & Hegemann, P. Evolution of the channelrhodopsin photocycle model. ChemPhysChem 11, 1120–1126 (2010).

    Article  CAS  Google Scholar 

  23. Bamann, C., Kirsch, T., Nagel, G. & Bamberg, E. Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J. Mol. Biol. 375, 686–694 (2008).

    Article  CAS  Google Scholar 

  24. Sugiyama, Y. et al. Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2. Photochem. Photobiol. Sci. 8, 328–336 (2009).

    Article  CAS  Google Scholar 

  25. Hedrick, T. & Waters, T.H. Spiking patterns of neocortical L5 pyramidal neurons in vitro change with temperature. Front Cell Neurosci 5, 1 (2011).

    PubMed  Google Scholar 

  26. Lin, J.Y. A user's guide to channelrhodopsin variants: features, limitations and future developments. Exp. Physiol. 96, 19–25 (2010).

    Article  Google Scholar 

  27. Cardin, J.A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  Google Scholar 

  28. Sohal, V.S., Zhang, F., Yizhar, O. & Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459, 698–702 (2009).

    Article  CAS  Google Scholar 

  29. Tsai, H.C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  Google Scholar 

  30. Atasoy, D., Aponte, Y., Su, H.H. & Sternson, S.M.A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008).

    Article  CAS  Google Scholar 

  31. Chater, T.E., Henley, J.M., Brown, J.T. & Randall, A.D. Voltage- and temperature-dependent gating of heterologously expressed channelrhodopsin-2. J. Neurosci. Methods 193, 7–13 (2010).

    Article  CAS  Google Scholar 

  32. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  33. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  Google Scholar 

  34. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  35. Witten, I.B. et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science 330, 1677–1681 (2010).

    Article  CAS  Google Scholar 

  36. Stuber, G.D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    Article  CAS  Google Scholar 

  37. Tye, K.M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  Google Scholar 

  38. Goshen, I. et al. Dynamics of retrieval strategies for remote memories. Cell 147, 678–689 (2011).

    Article  CAS  Google Scholar 

  39. Gradinaru, V., Thompson, K.R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  Google Scholar 

  40. Chow, B.Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  Google Scholar 

  41. Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  Google Scholar 

  42. Zimmermann, D. et al. Effects on capacitance by overexpression of membrane proteins. Biochem. Biophys. Res. Commun. 369, 1022–1026 (2008).

    Article  CAS  Google Scholar 

  43. Zhao, Y. et al. An expanded palette of genetically encoded Ca(2+) indicators. Science 333, 1888–1891 (2011).

    Article  CAS  Google Scholar 

  44. Goto, Y. & O'Donnell, P. Network synchrony in the nucleus accumbens in vivo. J. Neurosci. 21, 4498–4504 (2001).

    Article  CAS  Google Scholar 

  45. Sanchez-Vives, M.V. & McCormick, D.A. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034 (2000).

    Article  CAS  Google Scholar 

  46. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  47. Goold, C.P. & Nicoll, R.A. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68, 512–528 (2010).

    Article  CAS  Google Scholar 

  48. Lindsay, T.H., Thiele, T.R. & Lockery, S.R. Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nat Commun. 2, 306 (2011).

    Article  Google Scholar 

  49. Taylor, C.P. & Dudek, F.E. Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218, 810–812 (1982).

    Article  CAS  Google Scholar 

  50. Ren, J. et al. Habenula “cholinergic” neurons co-release glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69, 445–452 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Andalman, T. Davidson, I. Diester, S. Evans, I. Goshen, D. Mattis, I. Witten, L. Grosenick, S.-Y. Kim and C. Perry for helpful discussions, M. Lin (Stanford University) for ChIEF clones, and all memebers of the Deisseroth laboratory for their support. All viruses were packaged at University of North Carolina Vector Core. Supported by Bio-X and the Stanford Medical Scientist Training Program (J.M.), the US National Institute of Mental Health (1F32MH088010-01, K.M.T.), and the International Fulbright Science and Technology Award and a Stanford Graduate Fellowship (E.A.F.). K.D. is supported by National Institute of Mental Health, National Institute on Drug Abuse, National Institute of Neurological Disorders and Stroke, Howard Hughes Medical Institute, the Defense Advanced Research Projects Agency Reorganization and Plasticity to Accelerate Injury Recovery Program, the Keck Foundation, the McKnight Foundation and the Gatsby Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.M., K.M.T., E.A.F., C.R., R.P., O.Y. and K.D. contributed to study design and data interpretation. J.M. coordinated all experiments and data analysis. J.M., K.M.T., E.A.F., D.J.O., R.P. and L.E.F. contributed to acquisition of electrophysiological data. C.R. cloned all constructs, cultured primary neurons, performed transfections and managed viral packaging processes. D.J.O. wrote custom analysis scripts and analyzed all electrophysiological data. M.H. contributed to data analysis. J.M., K.M.T., C.R., L.A.G. and V.G. contributed to the histological processing and fluorescence imaging. K.D. supervised all aspects of the work. J.M., K.M.T., E.A.F. and K.D. wrote the paper.

Corresponding author

Correspondence to Karl Deisseroth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1–2 (PDF 4173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattis, J., Tye, K., Ferenczi, E. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat Methods 9, 159–172 (2012). https://doi.org/10.1038/nmeth.1808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing