Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical labeling strategies for cell biology

Abstract

Methods to visualize, track, measure and perturb proteins in living cells are central to biomedicine's efforts to characterize and understand the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have revolutionized such studies, they have shortcomings, which have spurred the creation of alternative approaches to chemically label proteins in live cells. In this review we highlight research questions that can be addressed using site-specific chemical labeling and present a comparison of the various labeling techniques that have been developed. We also provide a 'roadmap' for selection of appropriate labeling techniques(s) and outline generalized strategies to validate and troubleshoot chemical labeling experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for chemical labeling of proteins in cells.
Figure 2: Factors that affect the choice of chemical labeling technique.
Figure 3: Troubleshooting scheme for chemical labeling experiments.

Similar content being viewed by others

References

  1. Lippincott-Schwartz, J. & Patterson, G.H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  2. Lisenbee, C.S., Karnik, S.K. & Trelease, R.N. Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 4, 491–501 (2003).

    Article  CAS  Google Scholar 

  3. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  4. Tsien, R.Y. Fluorescent indicators of ion concentrations. Methods Cell Biol. 30, 127–156 (1989).

    Article  CAS  Google Scholar 

  5. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  6. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002).

    Article  CAS  Google Scholar 

  7. Marek, K.W. & Davis, G.W. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36, 805–813 (2002).

    Article  CAS  Google Scholar 

  8. Tour, O., Meijer, R.M., Zacharias, D.A., Adams, S.R. & Tsien, R.Y. Genetically targeted chromophore-assisted light inactivation. Nat. Biotechnol. 21, 1505–1508 (2003).

    Article  CAS  Google Scholar 

  9. Rajfur, Z., Roy, P., Otey, C., Romer, L. & Jacobson, K. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4, 286–293 (2002).

    Article  CAS  Google Scholar 

  10. Tanabe, T. et al. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein. Nat. Methods 2, 503–505 (2005).

    Article  CAS  Google Scholar 

  11. Allbritton, N.L., Oancea, E., Kuhn, M.A. & Meyer, T. Source of nuclear calcium signals. Proc. Natl. Acad. Sci. USA 91, 12458–12462 (1994).

    Article  CAS  Google Scholar 

  12. Amara, J.F. et al. A versatile synthetic dimerizer for the regulation of protein-protein interactions. Proc. Natl. Acad. Sci. USA 94, 10618–10623 (1997).

    Article  CAS  Google Scholar 

  13. Tsien, R.Y. Imagining imaging's future. Nat. Rev. Mol. Cell. Biol. (Suppl.) SS16–21 (2003).

  14. Griffin, B.A., Adams, S.R. & Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  Google Scholar 

  15. Chen, I. & Ting, A.Y. Site-specific labeling of proteins with small molecules in live cells. Curr. Opin. Biotechnol. 16, 35–40 (2005).

    Article  CAS  Google Scholar 

  16. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  Google Scholar 

  17. Stroffekova, K., Proenza, C. & Beam, K.G. The protein-labeling reagent FLASH-EDT2 binds not only to CCXXCC motifs but also nonspecifically to endogenous cysteine-rich proteins. Pflugers Arch. 442, 859–866 (2001).

    Article  CAS  Google Scholar 

  18. Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  19. George, N., Pick, H., Vogel, H., Johnsson, N. & Johnsson, K. Specific labeling of cell surface proteins with chemically diverse compounds. J. Am. Chem. Soc. 126, 8896–8897 (2004).

    Article  CAS  Google Scholar 

  20. Vivero-Pol, L., George, N., Krumm, H., Johnsson, K. & Johnsson, N. Multicolor imaging of cell surface proteins. J. Am. Chem. Soc. 127, 12770–12771 (2005).

    Article  CAS  Google Scholar 

  21. Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  CAS  Google Scholar 

  22. Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    Article  CAS  Google Scholar 

  23. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  Google Scholar 

  24. Keppler, A., Pick, H., Arrivoli, C., Vogel, H. & Johnsson, K. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc. Natl. Acad. Sci. USA 101, 9955–9959 (2004).

    Article  CAS  Google Scholar 

  25. Juillerat, A. et al. Engineering substrate specificity of O(6)-alkylguanine–DNA alkyltransferase for specific protein labeling in living cells. ChemBioChem. 6, 1263–1269 (2005).

    Article  CAS  Google Scholar 

  26. Miller, L.W., Sable, J., Goelet, P., Sheetz, M.P. & Cornish, V.W. Methotrexate conjugates: a molecular in vivo protein tag. Angew. Chem. Int. Edn Engl. 43, 1672–1675 (2004).

    Article  CAS  Google Scholar 

  27. Miller, L.W., Cai, Y., Sheetz, M.P. & Cornish, V.W. In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat. Methods 2, 255–257 (2005).

    Article  CAS  Google Scholar 

  28. Farinas, J. & Verkman, A.S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).

    Article  CAS  Google Scholar 

  29. Worn, A. & Pluckthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010 (2001).

    Article  CAS  Google Scholar 

  30. Guignet, E.G., Hovius, R. & Vogel, H. Reversible site-selective labeling of membrane proteins in live cells. Nat. Biotechnol. 22, 440–444 (2004).

    Article  CAS  Google Scholar 

  31. Rozinov, M.N. & Nolan, G.P. Evolution of peptides that modulate the spectral qualities of bound, small-molecule fluorophores. Chem. Biol. 5, 713–728 (1998).

    Article  CAS  Google Scholar 

  32. Marks, K.M., Rosinov, M. & Nolan, G.P. In vivo targeting of organic calcium sensors via genetically selected peptides. Chem. Biol. 11, 347–356 (2004).

    Article  CAS  Google Scholar 

  33. Marks, K.M., Braun, P.D. & Nolan, G.P. A general approach for chemical labeling and rapid, spatially controlled protein inactivation. Proc. Natl. Acad. Sci. USA 101, 9982–9987 (2004).

    Article  CAS  Google Scholar 

  34. Juillerat, A. et al. Engineering substrate specificity of O6-alkylguanine DNA alkyltransferase for specific protein labeling in living cells. ChemBioChem 6, 1263–1269 (2005).

    Article  CAS  Google Scholar 

  35. Hoffmann, C. et al. A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nat. Methods 2, 171–176 (2005).

    Article  CAS  Google Scholar 

  36. Gao, X. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 63–72 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry P Nolan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, K., Nolan, G. Chemical labeling strategies for cell biology. Nat Methods 3, 591–596 (2006). https://doi.org/10.1038/nmeth906

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing