Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion

Abstract

Individuals with 22q11.2 microdeletions have cognitive deficits and a high risk of developing schizophrenia. Here we provide evidence that primary hippocampal neurons from a mouse model of 22q11.2 deletion (Df(16)A+/− mice) have decreased density of dendritic spines and glutamatergic synapses, as well as impaired dendritic growth. These deficits were prevented by introduction of the enzymatically active ZDHHC8 palmitoyltransferase encoded by a gene in the 22q11.2 locus, and they were also observed in primary cultures from Zdhhc8-deficient mice. Many of these deficits were also present in the hippocampi of adult Df(16)A+/− and Zdhhc8-deficient mice. Finally, we provide evidence that PSD95 is one of the substrates of ZDHHC8. Our analysis reveals that 22q11.2 microdeletion results in deficits in neuronal development and suggests that impaired neuronal protein palmitoylation contributes to many of these deficits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Df(16)A+/− neurons show reduced density of spines and glutamatergic synapses.
Figure 2: Enzymatically active ZDHHC8 protein prevents deficits.
Figure 3: ZDHHC8 deficiency affects the density of spines and glutamatergic synapses.
Figure 4: ZDHHC8-dependent reduction in dendritic complexity in Df(16)A+/− neurons.
Figure 5: Alterations in spines and excitatory synapses in the hippocampi of mutant mice.
Figure 6: Alterations in dendritic complexity in the hippocampi of mutant mice.
Figure 7: ZDHHC8 shows palmitoyltransferase activity toward PSD95.

Similar content being viewed by others

References

  1. McDonald-McGinn, D.M. et al. Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: cast a wide FISHing net!. Genet. Med. 3, 23–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Woodin, M. et al. Neuropsychological profile of children and adolescents with the 22q11.2 microdeletion. Genet. Med. 3, 34–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bearden, C.E. et al. The neurocognitive phenotype of the 22q11.2 deletion syndrome: selective deficit in visual-spatial memory. J. Clin. Exp. Neuropsychol. 23, 447–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Sobin, C. et al. Neuropsychological characteristics of children with the 22q11 Deletion Syndrome: a descriptive analysis. Child Neuropsychol. 11, 39–53 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chow, E.W., Watson, M., Young, D.A. & Bassett, A.S. Neurocognitive profile in 22q11 deletion syndrome and schizophrenia. Schizophr. Res. 87, 270–278 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pulver, A.E. et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J. Nerv. Ment. Dis. 182, 476–478 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Karayiorgou, M. et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc. Natl. Acad. Sci. USA 92, 7612–7616 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, B. et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat. Genet. 40, 880–885 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Edelmann, L., Pandita, R.K. & Morrow, B.E. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am. J. Hum. Genet. 64, 1076–1086 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gothelf, D. et al. COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat. Neurosci. 8, 1500–1502 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Mukai, J. et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat. Genet. 36, 725–731 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Paterlini, M. et al. Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat. Neurosci. 8, 1586–1594 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Raux, G. et al. Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum. Mol. Genet. 16, 83–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Fukata, M., Fukata, Y., Adesnik, H., Nicoll, R.A. & Bredt, D.S. Identification of PSD95 palmitoylating enzymes. Neuron 44, 987–996 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Linder, M.E. & Deschenes, R.J. Model organisms lead the way to protein palmitoyltransferases. J. Cell Sci. 117, 521–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Roth, A.F., Feng, Y., Chen, L. & Davis, N.G. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol. 159, 23–28 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smotrys, J.E. & Linder, M.E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bijlmakers, M.J. & Marsh, M. The on-off story of protein palmitoylation. Trends Cell Biol. 13, 32–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. el-Husseini, A.E. & Bredt, D.S. Protein palmitoylation: a regulator of neuronal development and function. Nat. Rev. Neurosci. 3, 791–802 (2002).

    Article  CAS  Google Scholar 

  20. Chen, W.Y. et al. Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum. Mol. Genet. 13, 2991–2995 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Glaser, B. et al. No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. Biol. Psychiatry 58, 78–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Puech, A. et al. Comparative mapping of the human 22q11 chromosomal region and the orthologous region in mice reveals complex changes in gene organization. Proc. Natl. Acad. Sci. USA 94, 14608–14613 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stark, K.L. et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet. 40, 751–760 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. El-Husseini, A.E., Schnell, E., Chetkovich, D.M., Nicoll, R.A. & Bredt, D.S. PSD95 involvement in maturation of excitatory synapses. Science 290, 1364–1368 (2000).

    CAS  PubMed  Google Scholar 

  25. Sala, C. et al. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Charych, E.I. et al. Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD95. J. Neurosci. 26, 10164–10176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chakravarthy, S. et al. Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus. Proc. Natl. Acad. Sci. USA 103, 1071–1076 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bekkers, J.M. & Stevens, C.F. Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. USA 88, 7834–7838 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho, K.O., Hunt, C.A. & Kennedy, M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Kornau, H.C., Schenker, L.T., Kennedy, M.B. & Seeburg, P.H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD95. Science 269, 1737–1740 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Bellocchio, E.E., Reimer, R.J., Fremeau, R.T. Jr. & Edwards, R.H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ohno, Y., Kihara, A., Sano, T. & Igarashi, Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim. Biophys. Acta 1761, 474–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Gauthier-Campbell, C., Bredt, D.S., Murphy, T.H. & El-Husseini Ael, D. Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs. Mol. Biol. Cell 15, 2205–2217 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Tada, T. & Sheng, M. Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Vessey, J.P. & Karra, D. More than just synaptic building blocks: scaffolding proteins of the post-synaptic density regulate dendritic patterning. J. Neurochem. 102, 324–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. el-Husseini, A.E. et al. Synaptic strength regulated by palmitate cycling on PSD95. Cell 108, 849–863 (2002).

    Article  CAS  Google Scholar 

  38. Topinka, J.R. & Bredt, D.S. N-terminal palmitoylation of PSD95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Ehrlich, I., Klein, M., Rumpel, S. & Malinow, R. PSD95 is required for activity-driven synapse stabilization. Proc. Natl. Acad. Sci. USA 104, 4176–4181 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Firestein, B.L., Craven, S.E. & Bredt, D.S. Postsynaptic targeting of MAGUKs mediated by distinct N-terminal domains. Neuroreport 11, 3479–3484 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kanaani, J., Diacovo, M.J., El-Husseini Ael, D., Bredt, D.S. & Baekkeskov, S. Palmitoylation controls trafficking of GAD65 from Golgi membranes to axon-specific endosomes and a Rab5a-dependent pathway to presynaptic clusters. J. Cell Sci. 117, 2001–2013 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kang, R. et al. Presynaptic trafficking of synaptotagmin I is regulated by protein palmitoylation. J. Biol. Chem. 279, 50524–50536 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Washbourne, P. et al. Cysteine residues of SNAP-25 are required for SNARE disassembly and exocytosis, but not for membrane targeting. Biochem. J. 357, 625–634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berthiaume, L. & Resh, M.D. Biochemical characterization of a palmitoyl acyltransferase activity that palmitoylates myristoylated proteins. J. Biol. Chem. 270, 22399–22405 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. El-Husseini, A.E. et al. Dual palmitoylation of PSD95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 148, 159–172 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karayiorgou, M. & Gogos, J.A. The molecular genetics of the 22q11-associated schizophrenia. Brain Res. Mol. Brain Res. 132, 95–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Valdez-Taubas, J. & Pelham, H. Swf1-dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation. EMBO J. 24, 2524–2532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, K. et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron 44, 977–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Arguello, P.A. & Gogos, J.A. Modeling madness in mice: one piece at a time. Neuron 52, 179–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gu, J.G. & MacDermott, A.B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Sribour, A. Abrams-Downey, A. Garçia-Williams and D. Swor for technical support and assistance with the mouse colony; and G. Feng (Duke University) and P. Scheiffele (Columbia University) for constructs. This research was supported in part by the US National Institutes of Health (MH67068 to M.K. and J.A.G. and MH077235 to J.A.G.), a McKnight Brain Disorders Award, an EJLB Scholar award (to J.A.G.) and two NARSAD awards (to J.A.G. and J.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.M., A.D., L.J.D. and L.C. conducted research; K.L.S. contributed reagents; J.M., A.D., L.J.D., L.C. and A.B.M. analyzed data; M.K. and J.A.G. supervised the project; and J.M., A.D., L.J.D., A.B.M., M.K. and J.A.G. wrote the paper.

Note: Supplementary information is available on the Nature Neuroscience website.

Corresponding authors

Correspondence to Maria Karayiorgou or Joseph A Gogos.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Note, Supplementary Data and Supplementary Methods (PDF 4837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukai, J., Dhilla, A., Drew, L. et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 11, 1302–1310 (2008). https://doi.org/10.1038/nn.2204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing